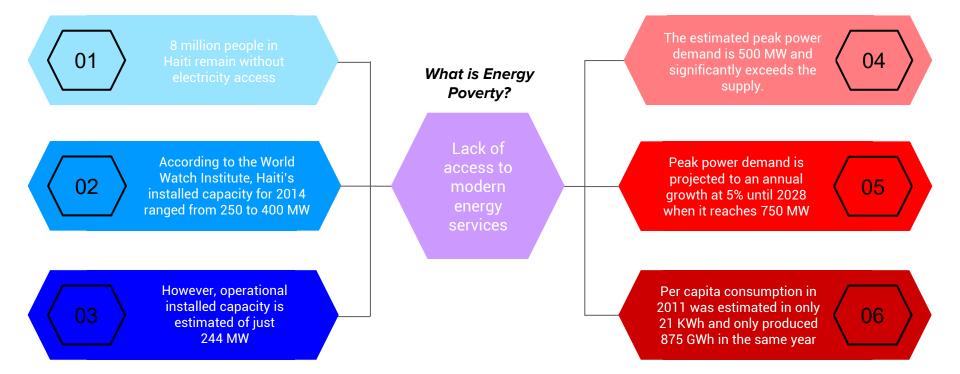
Illuminer Project for Haiti by Hyperion Team


Team members:

Fabian Díaz Rubén Herrera Irvany Petit José Tovar

Team mentor: Romina Portas

Introduction to the problem: Energy Poverty in Haiti

Background and previous actions

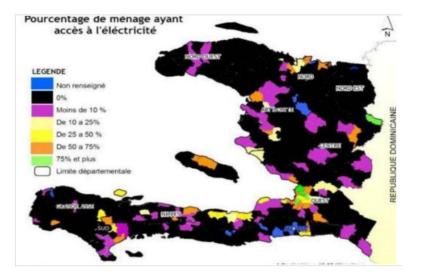
Electricité d'Haiti (EDH) is the national utility company that provides 15% of the energy produced in the country 2

5

85% of EDH's electricity comes from oil-based thermal generation and the other 15% from hydropower plants In the country exist independent power producers and 30 municipal mini-grids

EDH operates one main interconnected grid (Port-au-Prince) and nine smaller isolated grids

4


The average tariff is 0.30 \$/kWh

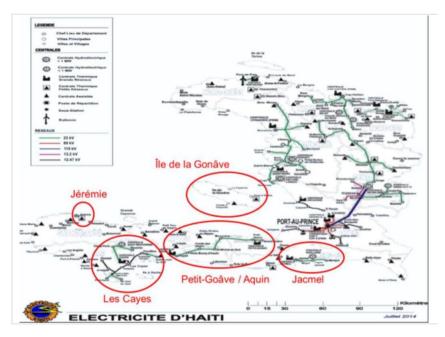
6

Recently in 2017, World Bank Group conducted a project powering 5 of 9 Isolated EDH grids with 1-12 MW PV solar plants

Haiti's energy current view

Haiti current energy access by zone

Source: "Renewable energy for all project", Report No: PAD1704, document of The World Bank, October 3, 2017


Regional isolated grids

Source: "Electrifying Haiti With Intelligent Investment in Community Solar Minigrids", presentation by Navigant at Haiti Sustainable Energy Forum", June 12-13, 2017

Haiti's energy current view

WBG and SREP map zones project

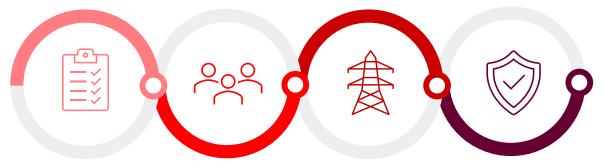
The World Bank Group budget for the six-year Project was estimated at 138.27 million USD¹.

In order to give continuity to the previous actions and boost the scalability of the project, we present the "Illuminer" project.

Source: "Renewable energy for all project", Report No: PAD1704, document of The World Bank, October 3, 2017

1. Dana Rysankova, (2017). Energy for All project. World Bank Group

Illuminer Project



Stage 1. Design *Mission, vision and objectives*

Short to medium-term

Generate local electricity through renewable energies in rural communities

Finally Centralize and give some reliability to the electrical system in Haiti.

Illuminer Project Has 2 main objectives

Long term

Boost the WBG project by powering the four missing isolated regional grids at the north side of the country

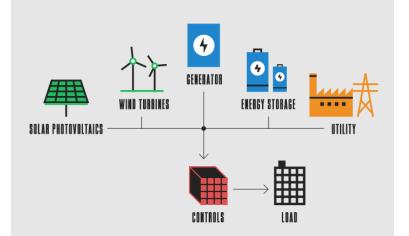
Stage 1. Design *Mission, vision and objectives*

Stage 1. Design *Financing and technical partners*

Financing support can be requested from institutions such as SREP, USAID and WBG. Also, technical support can be asked from WWI, General Electric and UNEP.

WORLDWATCH INSTITUTE

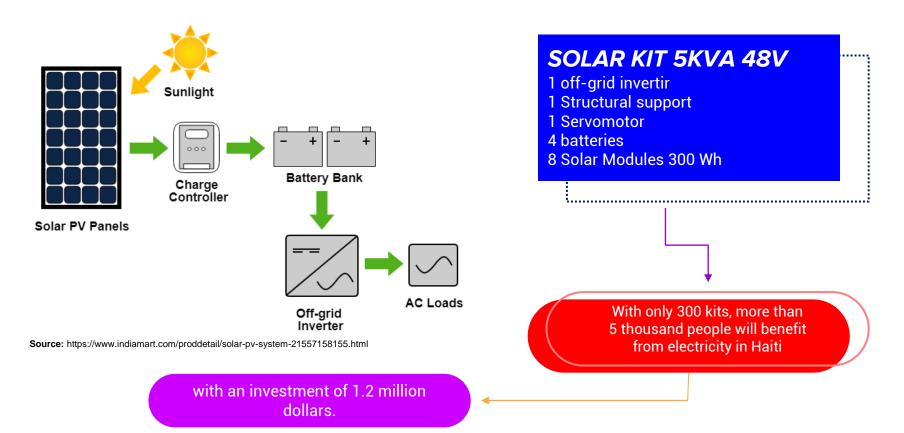

SREP = Scaling up Renewable Energy in low income countries Program USAID = U.S. Agency for International Development WBG = World Bank Group


WWI = World Watch Institute UNEP = United Nations Environment Programme

Stage 2. Implementation

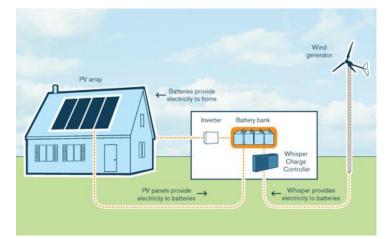
By generating electricity near rural populations of Haiti with distributed generation, we can increase the efficiency with a reduction of carbon pollution without the need for new transmission lines investments. Decentralized generation allows the supply of electricity when and where is needed.

With an estimate of 3 KWh per day for household, we can build a decentralized grid system between the communities to improve the life quality and boost the local economy with a low cost/benefit



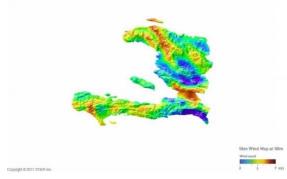
Source: https://www.simson-maxwell.com/power-generation/simmax-powersolutions/distributed-energy/

Stage 2. Implementation

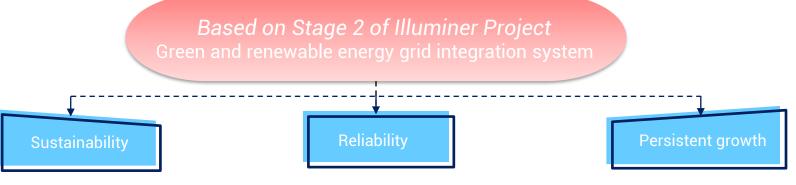

Solar Photovoltaic Power

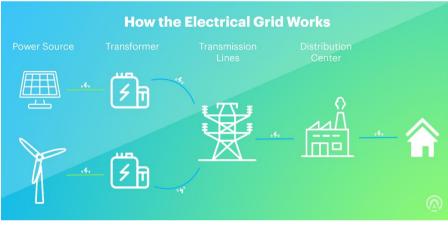
Stage 2. Implementation Wind Turbine off-grid system

Only in the Cul-de-Sac region of Haiti, with 15 wind turbines of 50 KWh each, we can supply energy to more than 100 communities with the regular wind


In a strategic position close to the town, wind turbines are sustainable at a minimum cost. Besides, it doesn't affect the bird population in the area The meridional and northern regions of Haiti also have strong wind potential. This can grant a sustainable wind distributed generation

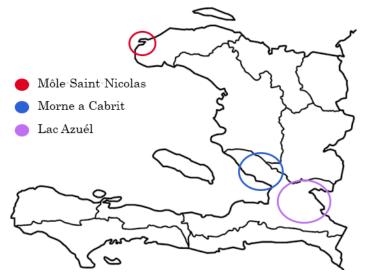
Source:https://lh3.googleusercontent.com/proxy/OgG9WkfcJUh4WMukPBW989W2jRm8cSH30qAXysdXrY-EqBmk2L8hZZRgOGYOb63SVt7ZIrCrGNe2eWuppNcks39joWZ4nWM3sw


Haiti Wind Map Annual Wind Speed at 80m



Source: 3TIER, from Haiti's Energy Roadmap.

Stage 3. Integration and centralization



Source: https://blog.arcadia.com/assets/2018/02/Electric-grid-v.7-1.png

Stage 3. Integration and centralization Haiti's Wind Energy Potential

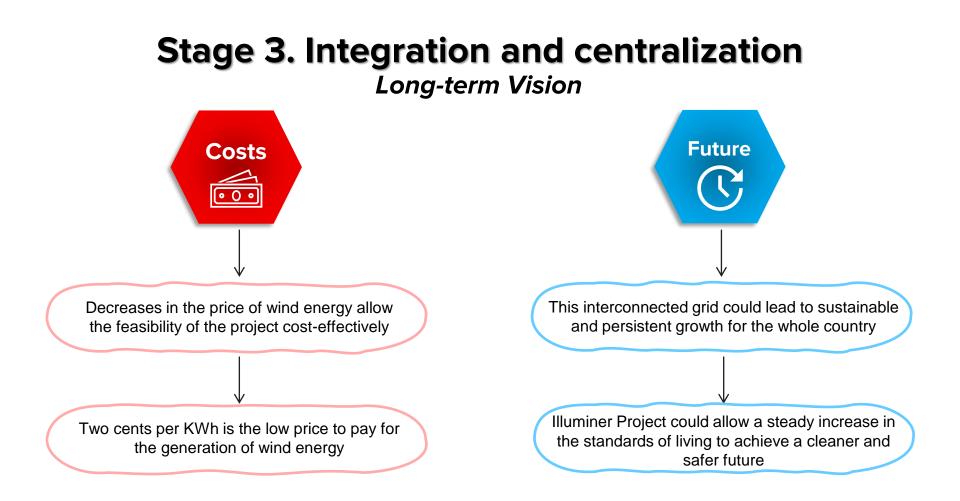
Several of Haiti's zones have a lot of wind potential. The most important ones are:

Source: Illuminer Project for Haiti. Caracas, Hyperion Team (2020).

Zone Name	Wind Speed			Gross Capacity Factor			Net Capacity Factor		
	80m	90m	100m	80m	90m	100m	80m	90m	100m
		m/s			percent			percent	
Lac Azuéi	8.13	8.24	8.34	62.6	63.5	64.3	53.2	54.0	54.7
Morne à Cabrit	7.32	7.41	7.50	50.1	51.1	52.0	42.6	43.4	44.2
Môle-Saint-Nicolas	6.55	6.63	6.71	43.8	44.7	45.5	37.2	38.0	38.7
La Gonâve	5.62	5.67	5.72	30.7	31.3	31.8	26.1	26.6	27.0
Tiburon	5.33	5.38	5.43	30.4	30.9	31.3	25.9	26.3	26.6
Morne Vent	5.08	5.16	5.23	26.5	27.4	28.2	22.5	23.3	24.0

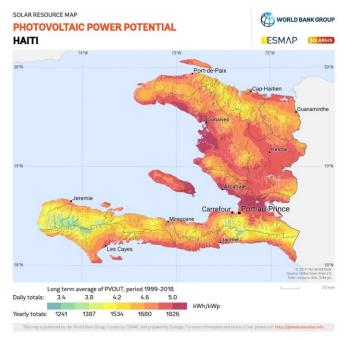
Note: Assessment reflects a 25-year period.

Source: See Endnote 28 for this chapter.


Site	Average Net Capacity Factor*	Annual Generation per 1.5 MW Turbine	Annual Generation per Square Kilometer [†]	Total Area Needed to Meet Haiti's 2011 Power Generation	Share of 2011 Generation from One-Square-Kilometer (30 MW) Wind Farm	Total Area Needed to Meet Haiti's Projected Net Generation in 2030
	percent	GWh		km²	percent	km ²
Lac Azuéi	53.2	7.0	139.8	6.3	16.0	46.5
Morne à Cabrit	42.6	5.6	112.0	7.8	12.8	58.1
Môle-Saint-Nicolas	37.2	4.9	97.8	9.0	11.2	66.5
La Gonâve	26.1	3.4	68.6	12.8	7.8	94.8
Tiburon	25.9	3.4	68.1	12.9	7.8	95.5
Morne Vent	22.5	3.0	59.1	14.8	6.8	109.9

* At an 80-meter hub height. Assumes estimated 15% loss to account for wake (slowed wind speed due to interruption from other turbines), electrical losses, etc.

[†] Assumes 20 wind turbines in a one-square-kilometer area. Source: See Endnote 29 for this chapter.


© Worldwatch Institute

Source: Alexander Ochs, (2014). Haiti Sustainable Roadmap. Washintong DC, Wold Watch Institute

Annexes

Map of solar energy potential

- The Global Horizontal Irradiance in the most zones in Haiti ranges from 5KWh/m² to 7KWh/m² per square meter per day, and even in some regions reach the 8KWh.
- 2. By comparison, Germany which has the half of the worlds installed capacity has fewer locations with GHI of just 3KWh/m² per day.
- 3. The zones with most potential reach their peak GHI from April to August and are very strong even in the winter months.

Source: 3TIER, from Haiti's Energy Roadmap.

Annexes

Solar energy potential

Table 3.1 Potential Gross Annual Solar PV Module Yields in the Six Haitian Zones

Site	Annual Generation per 175 Watt Module*	Annual Generation per Square Kilometer [†]	Total Solar Panel Area Needed to Meet Haiti's 2011 Power Generation	Share of 2011 Generation from One Square Kilometer of PV Modules	
	kWh	GWh	km²	percent	
Cul de Sac	413.2	149.9	5.59	17.1	
Parc Sonapi	405.5	147.1	5.70	16.8	
Port-de-Paix	403.7	146.5	5.72	16.7	
Les Cayes	397.0	144.0	5.82	16.5	
Péligre	392.3	142.3	5.89	16.3	
L'île de la Tortue	391.8	142.2	5.89	16.2	

* Includes effects of wind and temperature.

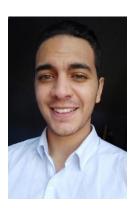
*Assumes that energy production per meter is cut in half to account for maintenance, the prevention of shading, and construction of other equipment. Source: See Endnote 18 for this chapter. © Worldwatch Institute

> **Source:** Alexander Ochs, (2014). Haiti Sustainable Roadmap. Washintong DC, Wold Watch Institute

Effects on solar energy

Table 3.2 Effects of Wind and Temperature on Solar PV Module Yields in the Six Haitian Zones

Site	Average GHI	Average DNI	Average DIF	Average Wind Speed	Average Temperature	Estimated Gross Annual Yield
		(W/m²) · day		m/s	°C	kWh
Cul de Sac	5,796	5,602	1,909	4.9	25.7	413.2
Parc Sonapi	5,707	5,436	1,949	5.1	26.1	405.5
Port-de-Paix	5,578	5,258	1,943	6.6	25.8	403.7
Les Cayes	5,645	5,304	1,935	3.3	25.9	397.0
Péligre	5,707	5,472	1,860	1.8	25.1	392.3
l "île de la Tortue	5,472	5,057	1,967	4.7	24.2	391.8


Source: Alexander Ochs, (2014). Haiti Sustainable Roadmap. Washintong DC, Wold Watch Institute

"There has not been another most accurate moment like today to "illuminer" days, nights, lives and dreams."

-Hyperion Team

Fabian Díaz **Petroleum Engineering** U.C.V (Universidad Central de Venezuela)

Rubén Herrera **Metallurgical Engineering** U.C.V (Universidad Central de Venezuela)

Irvany Petit **Petroleum Engineering** U.C.V (Universidad Central de Venezuela)

José Tovar Electrical Engineering U.C.V (Universidad Central de Venezuela)

References

- 1. Alexander Ochs, (2014). Haiti Sustainable Roadmap. Washington DC, World Watch Institute.
- 2. Jacques Rousseau, (2015). Investment plan for Haiti. Scaling-Up Renewable Energy Programme (SREP).
- 3. Dana Rysankova, (2017). Energy for All project. World Bank Group4.
- Samantha Newport, (2015). The Haiti Sustainable Energy Program. Saint-Étienne, France UNEP.
- 5. Arthouros Zervos, (2020). Renewable Global Status Report. Paris, France. Ren 21.
- Institute for Sustainable Development, (2018). Assessment of Haiti's Electricity Sector 2018. USA, Boston University
- Yepes, I. (2020). Funcionamiento De La Comercialización De Energía Solar Como Fuente De Energía Renovable Dirigido A La Integración Energética Española Hacia Los Países Vecinos A Través De La Empresa Esfera Norte S.L. Ubicada En Valladoid, España. (Thesis for bachelor science degree). Universidad Fermín Toro, Cabudare, Venezuela.
- 8. Environmental Energy Study Institute. Distributed Generation. Washington, DC, USA. Recovered from: <u>https://www.eesi.org/topics/distributed-</u>

generation/description#:[~]:text=Distributed%20generation%20(also%20called%20on,coal%2Dfired%20p ower%20plant).

References

- 1. Wind-Watch. Recovered from: <u>https://www.wind-watch.org/faq-output.php</u>
- 2. March 2020. Weather Guard Wind. Recovered from: <u>https://weatherguardwind.com/how-</u> much-does-wind-turbine-cost-worth-it
- 3. Kellner, L. (August, 2019). News center LBL. Report Confirms Wind Technology Advancements Continue to Drive Down the Cost of Wind Energy. Recovered from: https://newscenter.lbl.gov/2019/08/26/report-confirms-wind-technology-advancements-continue-todrive-down-the-cost-of-windenergy/#:[~]:text=Wind%20energy%20pricing%20remains%20attractive,competitive%20with%20other %20generation%20sources.
- Fleming. S, (March, 2019). World Economic Forum. Wind farms now provide 14% of EU power – these countries are leading the way. Recovered from: https://www.weforum.org/agenda/2019/03/wind-farms-now-provide-14-of-eu-power-these-countriesare-leading-the-way/
- 5. Bertaux, X. (2010). Roadmap to Sustainable Energy system. Recovered from: http://www.bme.gouv.ht/ugse/Fu-Bertaux%20Energy%20Workshop%20Haiti.pdf
- 6. Power info today. The company's T-VAWT wind turbine is more compact and still works under low wind conditions. Recovered from: https://www.powerinfotoday.com/wind-energy/the-company-s-t-vawt-wind-turbine-is-more-compact-and-still-works-under-low-wind-conditions/