

SWITCH ENERGY ALLIANCE

Switch Energy Alliance Case Competition Papua New Guinea

Research Team: In The Greens

Riley AndersonMentor:Zeke KangChris TuohySatvik Kolluri

Executive Summary

Problem Overview

- Lack of electrification & reliable cooking fuel, far behind 2010 strategic initiative
- Environmental, cultural and geographical barriers to on-grid expansion
- Energy poverty severely hampering PNG's health, education and economic growth

Solution: On-Grid

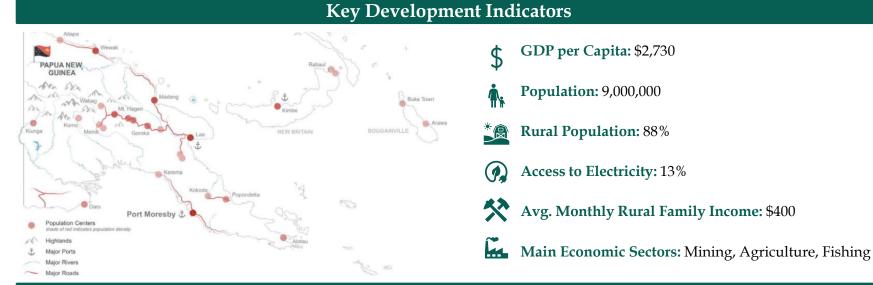
- Predictive geospatial models suggest on-grid expansion is ideal for ~7% of population
- Hydropower is identified as the least levelized cost of energy source for on-grid
- Existing projects and partnerships set up meet on-grid demand in near and distant future

Solution: Off-Grid

- Implement community and household level solar solutions for geographically available areas
- Implement community level biogas system for cooking, lighting and electricity
- Set up biomass cooking best practices as a bridge solution before electric/biogas stoves

Solution: Financing

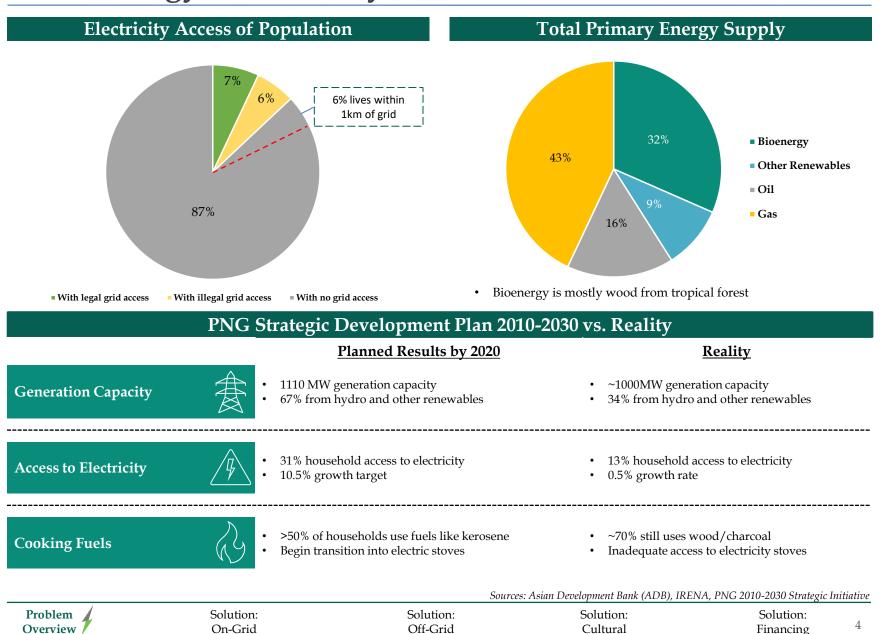
- Financing solution using a mix of subsidies, international partnerships and private sector
- Public and private sectors installing energy capacity collects fees upon meter usage
- With financing from grants and loans, revenue exceeds costs of project on an NPV basis


Solution: Culture

- Education of electrification benefits to rural villages, establishing communication
- Careful solicitation of energy solution followed by implementation at will of rural population
- Capable of co-existing with subsistent farming through biogas residue or solar irrigation

Problem Overview

Papua New Guinea (PNG) Overview

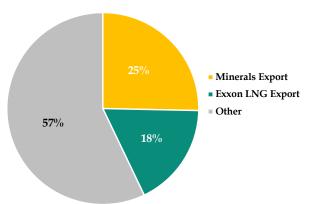


			Mode	rn Develo	pment Tim	neline			
1975 Attains full independence from Australia		Bougainy struggle b envii	1989 ville separatist egins following conmental struction			hati	2009 G Vision 2050 onal strategic an initiated	2016 China agre spend \$4bn to giant indus park in Pl	o build strial
1975	1980	1985	1990	1995	2000	2005	2010	2015	2020
Hosts f	1977 irrst election since pendence				1997 ougainville gle ends with truce		2011 Political turr to paral administra within P Sources: World Bank	noil led lel itions	artment, BBC, EY
Problem Overview		Solution: On-Grid		Soluti Off-G		Soluti Cultu	on:	Solution Financ	on:

PNG Energy Availability



Natural Resource & Cultural Challenges


ExxonMobil Case Study

Doubling Down

Exxon and partners plan to boost gas exports

Natural Resources' Role in Economy

• Mining & resources makes up nearly half of the country's economy

Background

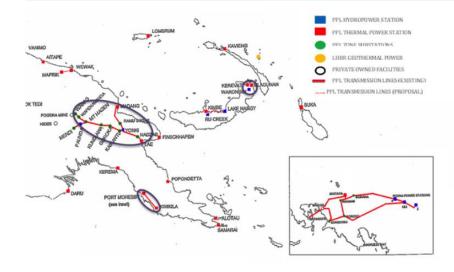
- After decades of development, ExxonMobil successfully began to export LNG from PNG in 2014
- ~7.5 million tons of LNG exported annually, valued at \$3.6bn, nearly 18% of PNG's GDP
- Progress on development of a 2nd field halted in 02/2020 due to disagreement of royalty terms

Implications on Energy Supply Potential

- The 7.5 million tons of LNG could generate <u>~95x the country's</u> electricity if only used domestically
- Infrastructure already largely in place to extract equal amount of LNG in the second field (Elk-Antelop)
- Similar levels of significant extraction potential in the Pn'yang field, Western Gas field and Pasca Gas field
- There is no shortage of gas supply for energy generation

Aspects of Failure & Future Challenges

- Poor terms negotiated for the first field, including:
 - Huge forgone tax revenue
 - 5% of gas for domestic use vs. 15% desired
 - Foreseeable future land ownership disputes
- Exxon failed to meet some of its promises including:
 - 15% GDP growth vs. double GDP promised
 - Expenditure overshoot of \$3.3bn, largely subsidized by PNG government
- Ex-prime minister resigned as a result of the scandal, negotiation difficulties with new government


Sources: ExxonMobil Investor Presentations, IRENA, PNG-LNG Project, PNG Industry News

				, , , , , , , , , , , , , , , , , , ,
Problem	Solution:	Solution:	Solution:	Solution:
Overview	On-Grid	Off-Grid	Cultural	Financing ⁵

Current Energy Infrastructure

Current Energy Infrastructure

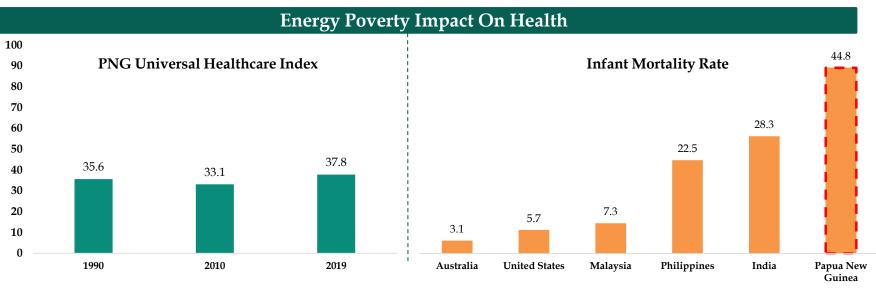
Public Sector

- Three main grids operated by PNG Power Ltd (PPL)
 - Ramu coastal and central
 - Port Moresby capital district
 - Ganzelle Peninsula off from mainland
- 19 small grids for provincial centers
- 300MW capacity

Private Sector

- Independent power producers (IPP)
- Mainly generated by and serving the mining sector
- 280MW capacity

Electricity Affordability (¢/kWh)


On-Grid Challenges Overall Geography • 75% tropical forest • Scarcely populated • Scarcely populated Grid Reliability • 42 power outages per month
- 5x more than nearby islands
• <65% installed capacity available from hydro</td> Land Policy • 97% of land under customary tenure, nearly
all unregistered
• Prior uprisings from environmental
destruction

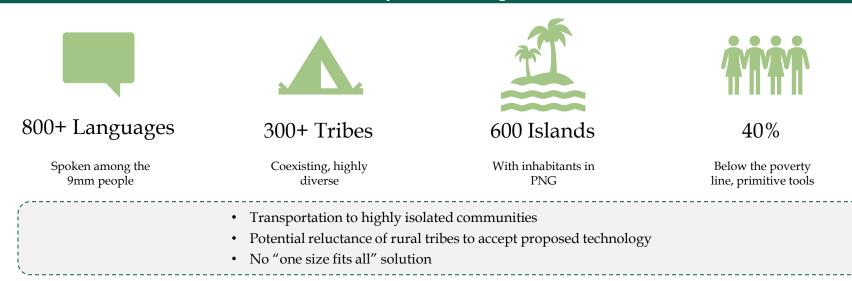
Sources: Papua New Guinea University of Technology, ADB, World Bank, PNG Government

Problem	Solution:	Solution:	Solution:	Solution:
Overview /	On-Grid	Off-Grid	Cultural	Financing ⁶

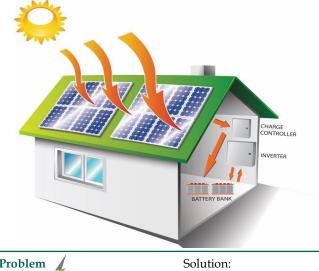
Effects of Energy Poverty

PNG have the lowest life expectancy among pacific islands due to:

- 1. Doctors struggle to provide clinical services after sunset
- 2. Life saving examinations & **operations cannot be performed** without good lighting
- 3. Medication, blood supply and **vaccines cannot be stored** in proper conditions
- 4. Facilities **cannot power equipment** such as X-rays and incubators
- 5. Poor power leads to indoor biomass/kerosene usage which can lead to significant **air pollution problems (**2nd cause of death & disabilities in developing countries)


Energy poverty also have significant adverse impact on education, economy and environment

				Sources: United Nations, Macrotrends
Problem	Solution:	Solution:	Solution:	Solution:
Overview	On-Grid	Off-Grid	Cultural	Financing 7


Cultural Challenges

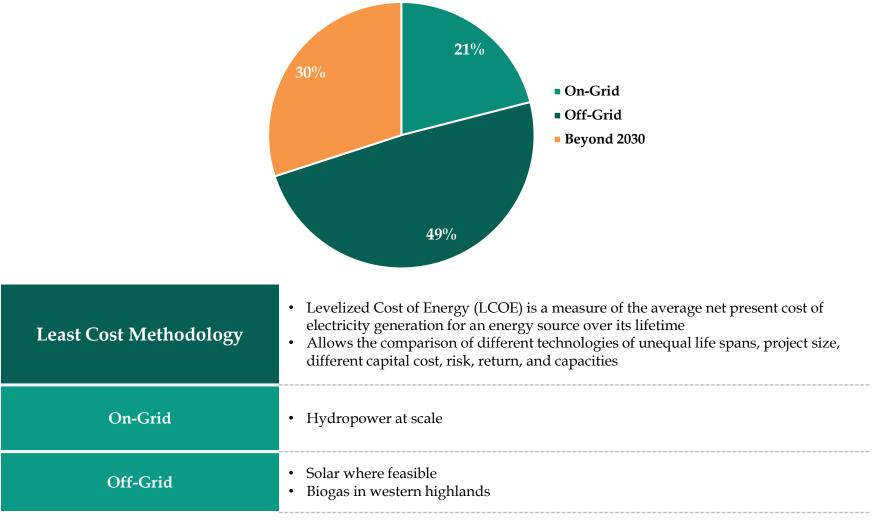
Cultural Diversity and Ensuing Difficulties

Implementation Difficulties - Precedent

World Bank Asia Sustainable and Alternative Energy Program – Solar Home Systems:

- System included panel, light, stove and charger. Average cost \$1,000
- · Families can opt-in and governments covered partial cost
- 400,000+ units sold to rural families
- Successful in China, Laos, Mongolia
- Failed in PNG, only country with inadequate project management and execution

Sources: World Bank, ADB, PNG Government


ProblemSolution:Solution:Solution:Solution:OverviewOn-GridOff-GridCulturalFinancing8			00010	es. Horia Bana, HEB, HIG Government
	7			8

Solution Methodology

Solution Methodology

Least Cost, Most Feasible Solution to 70% Electrification By 2030

Sources: United Nations, Macrotrends

Supporting Policy Initiatives

National Public Private Partnership Policy	Expresses long term financial commitment by the public sectorAllows the private sector to recoup the cost of their investment
Electricity Industry Policy	 Strategic objective of government to improve access to electricity services Also includes improving reliability of current electricity supply Ensuring affordability to consumers, regardless of demographics
National Energy Policy	 100% electricity usage from renewable sources by 2050 Aims to meet energy needs at least-cost, with consideration to the environment

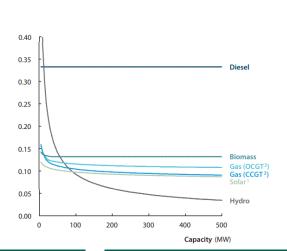
ETF Purpose

- ETF represents an **independent task force** with support from PNG's governmental institutions (DPE) and foreign development interests
- Expands greatly upon under-staffed rural electrification services team to accelerate electrification rates
- · Contracts with under-utilized private markets with relevant expertise and willingness to drive change
- Funded entirely through generated revenue, concessionary loans, and relatively small amounts of grants
 - Avoids over-burdening PNG's budget and contributing to financial distress (such as that from the COVID-19 pandemic)
 - Avoids re-allocating money from other impactful projects
- Avoids direct integration within government, which in the past has been inefficient
- Can be dissolved when private market participation levels increase due to expanding market opportunities
 - Expected dissolvement year is 2030, when 70% of electrification is achieved and financial feasibility is proven

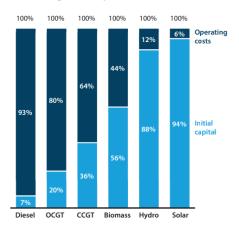
		Sources: Papua N	Iew Guinea Strategic Development Plan	, Columbia Earth Institute, World Bank
Problem	Solution:	Solution:	Solution:	Solution:
Overview	On-Grid	Off-Grid	Cultural	Financing ¹¹

Solution: On-Grid

On-Grid Solutions



On-Grid Levelized Cost of Electricity


Levelised cost of electricity

US\$/kWh

- For on-grid solutions, cost of electricity falls as scale increases
- Consideration for initial investment costs versus ongoing operating costs
- For scales up to 100MW, solar is the least-cost solution
 - For scales greater than 100MW, hydropower is the least-cost solution

Initial capital versus operating costs (100MW installation) Percentage of lifecycle cost (%)

On-Grid Improvements

	Intensification	Extension	
Households Connected	291,168 (improving existing connections)	142,082 (new connections)	
Average Households Connected/Improved (2021 through 2029)	32,352/year	15,787/year	
Total Investment Cost	\$150,000,000	\$150,000,000	
Average Investment Cost per Year	\$16,666,667	\$16,666,667	
Average Investment Cost per Household	\$515.17	\$1,055.73	
Problem Overview	Solution: On-Grid		So

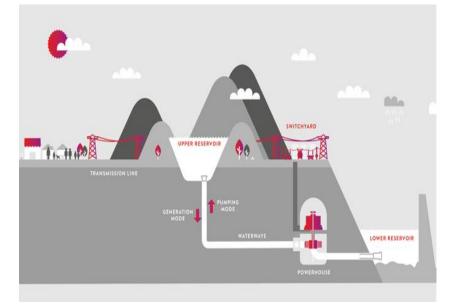
Key Points

- On-grid solutions will power approximately 21% of PNG by 2030
 - This percentage represents the conclusions of numerous least-cost procedural studies and geospatial predictive modeling
- Current grid solutions available are unreliable and require rehabilitation
- Grid extensions to households within 1km represent a leastcost expansion for ~142,000 households
- For additional on-grid power generation, **hydropower** represents the least-cost solution
 - Source: EY, Asian Development Bank, Columbia Earth Institute, PNG DPE, World Bank

ı	Solution:	Solution:	Solution:	Solution:
N	On-Grid	Off-Grid	Cultural	Financing ¹³

Planned New Generation

New Planned & Undergoing Projects (Independently Financed)


Project Name	Estimated Cost (\$)	Estimated Generation
Karimui (Hydropower)	\$2bn	1800MW
Port Moresby Power Station (Gas)	\$98m	57MW
Purari Partnership (Hydroelectric)	\$5bn	1800MW
Edevu (Hydropower)	\$200m	50MW

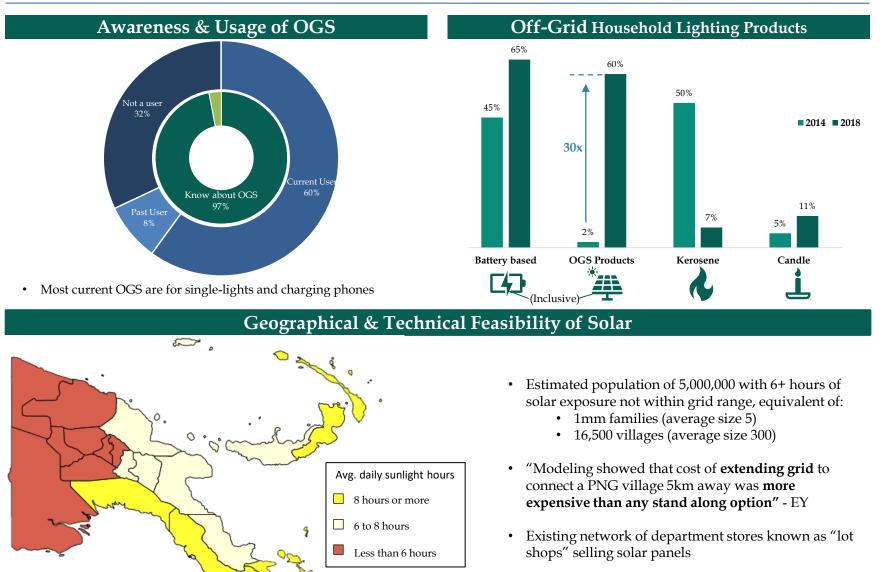
Minimum Planned New Generation Capacity & Demand

Generation Source (MW)	2020	2025	2030	2040
Hydropower	240	2,090	2,990	2,990
Geothermal	48	48	48	48
Natural Gas	84	141	141	141
Diesel	228	228	228	228
Total Capacity	600	2,507	3,406	3,407
Total Demand	800	1200	1800	2700

Takeaways

- Independently financed projects estimated to be completed before 2030 fulfill projected on-grid energy demand
- Projects include cost of connecting to the grid and any grid modifications required
- At ~15,000MW potential capacity, hydropower in PNG has excess energy production capabilities
- Partnerships such as the one with Australia on the Purari river offer foreign capital and customer bases to finance future long-term hydropower projects in PNG

Source: PNG Energy Developments, Origin Energy, Environmental Resource Management, PNG Development Strategic Plan, IRENA


Problem	Solution:	Solution:	Solution:	Solution:
Overview	On-Grid	Off-Grid	Cultural	Financing ¹⁴

Solution: Off-Grid

Viability of Off-Grid Solar (OGS)

ኈ ¢ ~ Problem

đ ~	40 - S	~	Sources: 1	Lighting Pacific, Climates To Travel, EY
Problem	Solution:	Solution:	Solution:	Solution:
Overview	On-Grid	Off-Grid	Cultural	Financing ¹⁶

OGS Economic Feasibility

Community/Village Centers

Comm	unity annual electricity no	eeds_	(kWh)
3 Large	· · · · · · · · · · · · · · · · · · ·		1,800
Area Fa	ans & Air Conditioning		2,500
10 Fluo	rescent lights 8hrs/day		750
Other p	ootential needs		1,950
Total			7,000
Daily to	otal		19.2
Averag	e daily sunlight hrs:		6
Solar P	annel Watts Needed:		3,196
Solar P	annel Watts Needed:	<u>Unit Cost</u>	3,196 Bundle Cost
Solar P	annel Watts Needed: (300 watt) X 14	<u>Unit Cost</u> \$100	
Solar P			Bundle Cost

Family	Homes	
Family Annual Electricity Ne	(kWh)	
One Small Fridge		400
Two 75w Fans 3hrs/day		150
Two Fluorescent Lights 8hrs/o	day	150
Other Potential Needs		500
Total		1,200
Daily Total		3.3
Average daily sunlight hrs:		6
Solar Pannel Watts Needed:		548
*	<u>Unit Cost</u>	Bundle Cost
(300 watt) X 3	\$100	\$300
(4.8 kWh) X 1	\$450	\$450
Shipping & Installation		\$200
Electric Cookware		\$80
Cost per Family:		\$1,030
Est. # of Homes		855,756
Family Homes Total Cost		\$881.4m

Solution:

Cultural

• All electric products are assumed to be shipped from China, where nearly all existing solar products comes from

\$4,150

16,536

\$68.6m

• Additional taskforce/consulting fees noted independently in financing section

Problem
Overview

Cost per Community/Village:

Community centers total cost

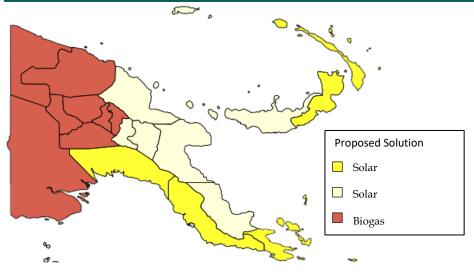
Est. # of Villages

Solution: Off-Grid

Sources: United Nations, Alibaba.com, EnergyUseCalculator

Solution: Financing 17

Illustrative OGS Implementation Timeline


	Implementation - Public Private Partnership					
	ase 1: Set Up Task Force, Import nels and Training		ase 2: Public private partnership to Dement household level OGS		e 3: Complete transfer of ementation to private sector	
1.	Purchase panels needed for community centers (\$61mm), contract the rest (\$794mm)	1.	Task force offers to train & sell panels to private sector businesses at discount	1.	Accelerated community outreach, more persuasive electrification marketing	
2.	headed by ADB, PNG government,	2.	Begin immunization and quality of life improvements through village centers	2.	Complete shift to private sector distribution/implementation	
3.	Australia and other NGOs Task-force to train ~500 community center	3.	Outreach to rural households to install OGS, modeled by community centers	3.	Accelerated implementation through economies of scale in private sector	
4.	implementation team Begin construction of community centers, all	4.	Families elect to install solar power through local, private businesses (1mm targeted) in 6	4.	Potentially distribute electric cooking stoves to households	
	subsidized by government (16,500)		years	5.	Develop healthy renewables private sector	

		Phase 1			<u>Pha</u>	<u>se 2</u>			<u>Pha</u>	<u>se 3</u>	
Year	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Purchase Panels											
Establish Special Task Force											
Train implementation team											
Begin community center constructions											
Sell panels to & train private sector											
Begin immunization efforts											
Begin OGS household implementations											
Outreach to rural households											
Accelerated outreach											
Complete shift to private sector											
Accelerated implementation											
Distribute electric cookware											
Develop healthy private sector									-		
					1				Sout	rces: ADB, Prio	r Estimates
Problem Overview	Solution: On-Grid			Solution Off-Grie			Solution: Cultural			Solution: Financing	18

Rationale For Biogas Solution

Geographical Challenges In Non-Solar Regions

- 1. Known as the "Western Highland" region with heavy rain and forest, **not ideal for solar or wind, or grid extension**
- 2. Uneven distribution of lakes and lack of technical sophistication makes **hydro and geothermal unreliable**
- 3. Extraordinarily diluted population with **highly isolated low-income villages** (<\$400/month, 7,600 villages)
- **4.** Lack of trust in foreign investments due to environmental destruction and previous Exxon development issues

Viability of Biogas

5. Heavy usage of biomass as cooking fuel leading to **mass deforestation**

Toler Toler Domestic Use Crop Fertilisation Crop Fertilisation

T

1,360,000

Pigs are in the targeted region, 60% of all pigs in PNG 180

Pigs per 300 people

village, plenty of

biogas fuel

Germany & India

Already have massscale implementations of biogas communities

• Can be used for lighting and cooking standalone, can generate electricity with biogas engines

Problem Overview

s engines		Sources	<u>s: IRENA Biogas Survey, Lighting Pacific</u>
Solution:	Solution:	Solution:	Solution:
On-Grid	Off-Grid 7	Cultural	Financing ¹⁹

Logistical Overview

Biogas Economic & Technical Feasibility

Supply of Biogas Fuels

Biogas Energy Technical Feasibility	
Est. # of Village Pigs	1,800,000
Est. % of Pigs Owned by Target Villages	60%
Estimated # of pigs available	1,080,000
Est. # of Rural Villages in Target Region	6,008
Avg. # of Pigs Per Village	180
Average Weight of Pigs (kg)	43.5
Liters of Biogas per kg of Pig per Day	30
Energy Potential per 1,000 liters (kWh)	1.7
Daily Energy Potential per Pig (kWh)	2.22
Daily Energy Potential Per Village (kWh	

Demand of Biogas Fuels

Family Annual Electricity Needs	(kWh)
One Small Fridge	400
Two 75w Fans 3hrs/day	150
Two Fluorescent Lights 8hrs/day	150
Other Potential Needs	500
Total	1,200
Daily Total	3.3
Average Village Size	300
Average Families of 5 per Village	60
Daily energy need per village (KWh)	197

Qualitative & Quantitative Analysis

Foundation	2,500
Digester	4,600
Effluent Storage	1,900
Roof	1,500
Gas Pump	700
Boiler	600
Hydra-Ram Manure Pump	4,900
Mason/Consultant Cost	4,000
Biogas Electric Engine	5,000
Cost of Grid Distribution (Barbwires)	1,400
Est. Cost per Village	27,100

Biogas Project Total Cost

162,823,213

Pros:

- Highly affordable even to rural regions at \$450 per family
- Minimum maintenance cost ٠
- 100% renewable materials with no plastic waste ٠
- Also solves cooking problem (methane)

Cons:

- Require high level of expertise ٠
- Potential cultural barriers to use of system ٠
- May need diesel to start off engine ٠
- Susceptible to heavy flood ٠

Problem	Solution:	Solution:	Solution:	Solution:
Overview	On-Grid	Off-Grid	Cultural	Financing ²⁰

Illustrative Biogas Implementation Timeline

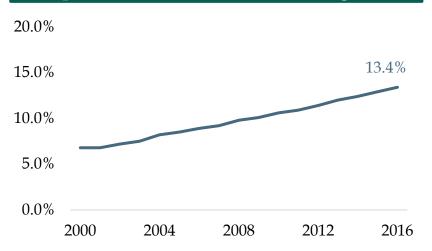
Implementation: Training & Consulting Program

Phase 1: Import Engines, Seek Consultants & Train Locals

- 1. Establish department of biogas within task force; contract to import biogas engines needed from China (\$3.7m)
- Employ ~500 locals across the western highland region, hire international biogas experts/consultants to train locals on integrating the electricity converting engine
- 3. Launch awareness program to educate rural villages on biogas electricity capabilities
- 4. Begin implementation of biogas systems without engine; transform local lighting & cooking fuel usage

Phase 2: Fully Activate Biogas System Potential

- 1. Implement electrical engines to biogas systems
- 2. Initiate financing solution on a village level upon completion of biogas system construction
- 3. Continued support and education on utilization of biogas system, from lighting, cooking fuel, electricity to agriculture
- 4. 70% of mountainous region villages (~5300) electrified


2020	2022	202	5	2028	2030
		Case Study: Penn	State Dig	ester	
		\wedge		produced 60% methane, at 22 M ssumptions	/J/m ² , in line with
			 Output 	uts mainly used for powering h	eaters
נג-ע				lant was not used to generate e conversion of energy, the elect	
00 Cows	\$20,000	876m Btu	•	Optimistic estimate: 704 kWh	a daily
00 00 00 00	Ψ20,000	or one bid	•	Conservative estimate: 200 k	Wh daily
Used in their gester, roughly jual to 180 pigs	Upfront cost, without engine included	Of energy generated in 1 year		in the most conservative case, b • village	iogas can power th

			Sources: Penn State, Energypedia, P	NG Ministry of Agriculture and Livestock
Problem	Solution:	Solution:	Solution:	Solution:
Overview	On-Grid	Off-Grid	Cultural	Financing ²¹

Cooking Fuel

Population Access to Clean Cooking Fuel

Best Practices During Transition

- Transition to clean cooking fuels takes time; need for temporary solutions
- Awareness: Implementing educational program about the dangers of cooking with biomass
- **Practices:** Cook in ventilated areas and keep children's exposure to a minimum

Cooking Methods

- Primary method is cooking over fire
- High household air pollution
- Health concerns include **pulmonary and respiratory problems**
- Clean cooking solutions are expensive and inaccessible

Community Centers

- Community centers are implemented with priority
- Early access to centers provides structural support to health care and educational initiatives
- Centers provide a touch point for community outreach

Financing & Scalability

		Key Fina	ancing Consideration	5	
Market Development	• Int	blic-Private Partnerships (PPP) d getting new markets to matu ernational private investors are PNG that lack developed marke	rity in developing countries unwilling to invest capital in l		
International Development I	Partners • Us	oosing international partners is e of debt-trap diplomacy, notab untries and has complicated pre	bly by China, has been a downf		g
Subsidies	SO 1	ere is little to no precedent of r me form of subsidy Istomers can not afford one-tim		0	
Papua New Guinea Electrif Partnership	reation	Ilaborative effort including Aus ach 70% electrification by 2030 puntries have combined to offer	-)
Grants and Loans	(G Dh • Gr	pport from numerous foreign g GGI), Asian Development Bank habi Fund for Development, and ants represent international effo nservatively estimated to provi	(ADB), Global Climate Partne 1 more ort to electrify developing cour	rship Fund (GCPF), A ttries	
	So lution: h-Grid	<i>urce: U.S White House, University of Chi</i> Solution: Off-Grid	cago, Global Green Growth Institute, Glob Solution: Cultural	<i>al Climate Partnership Fund,</i> Solution: Financing	<i>Lazard</i> 24

Financing Roll-Out Plan

		PNG	Electrifi	cation Co	st Financ	ing Roll-	-Out Plan	l			
\$ amounts in '000s	2021	2022	2023	2024	2025	2026	2027	2028	2029		
Investment Costs											
Grid Intensification	(6,667)	(9,167)	(11,667)	(14,167)	(16,667)	(19,167)	(21,667)	(24,167)	(26,667)		
rid Extension	(6,667)	(9,167)	(11,667)	(14,167)	(16,667)	(19,167)	(21,667)	(24,167)	(26,667)		
ommunity Centers	(68,624)										
ogas Project	(7,237)	(9,950)	(12,664)	(15,378)	(18,091)	(20,805)	(23,519)	(26,233)	(28,946)		
off-Grid	(39,175)	(53,865)	(68,556)	(83,246)	(97,937)	(112,627)	(127,317)	(142,008)	(156,698)		
Total	(128,369)	(82,149)	(104,553)	(126,957)	(149,361)	(171,766)	(194,170)	(216,574)	(238,978)		
unding Sources											
onnection Charge Revenue	13,288	31,560	54,815	83,053	116,274	154,478	197,666	245,837	298,991		
oreign Aid Grants	20,000	20,000	20,000	20,000	20,000	20,000	20,000	20,000	20,000		
NGEP Loans	125,000	125,000	125,000	125,000	(100,000)	(100,000)	(100,000)	(100,000)	(100,000)		
Fotal	158,288	176,560	199,815	228,053	36,274	74,478	117,666	165,837	218,991		
ousehold Electrification											
rid Intensification	11,647	16,014	20,382	24,749	29,117	33,484	37,852	42,219	46,587		
rid Extension	5,683	7,815	9,946	12,077	14,208	16,339	18,471	20,602	22,733		
iogas	14,419	19,826	25,234	30,641	36,048	41,455	46,862	52,270	57,677		
ff-Grid	34,230	47,067	59,903	72,739	85,576	98,412	111,248	124,085	136,921		
nargeable Households Connected	25,402	23,829	30,328	36,826	43,325	49,824	56,323	62,821	69,320	2030 G	oal
tal Households Connected	345,501	420,208	515,290	630,747	766,579	922,786	1,099,367	1,296,323	1,513,654	1,468	,165
otal Households in PNG	1,824,000	1,852,524	1,881,495	1,910,918	1,940,802	1,971,153	2,001,979	2,033,286	2,065,084	2,097	,378
lectrification Rate	18.9%	22.7%	27.4%	33.0%	39.5%	46.8%	54.9%	63.8%	73.3%	70.	.0%

Assumptions

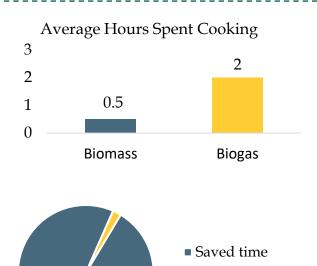
- PNG's sovereign guarantee will pass-through a conservative financing rate of 4.0%
- Urban households use approximately 2.5x the electricity of rural households
- There's an implementation and execution margin of error of 10%
- Implementation logistics make it that households connected increase by a factor of 15.0% per year
- A conservative average of five people per household
- Zero-interest loans of \$125m provided for four years, repaid in five years
- Grants of \$20m provided over lifetime of projects

Takeaways

- The project has a positive net present value over a nineyear lifespan, disregarding profits generated provided after 2030
- Average cost of energy of \$0.12/kWh under proposed plan (current prices are \$0.39/kWh)
 - **69% cheaper**, and more reliable
- After 2030, projects will be profitable and generate high returns encouraging private market participation
- Conservative assumptions and built-in failure rates allow for **considerable upside**

Problem	Solution:	Solution:	Solution:	Solution:
Overview	On-Grid	Off-Grid	Cultural 7	Financing ²⁵

Cultural and Sustainability Considerations


Cultural Considerations

•

Sensitivity to Indigenous Populations

- Off-Grid Solutions will be on an **opt-in basis**, with no requirements for local people to enroll
- In the past, PNG tribes have been **receptive to solar projects**, but concerned about exploitative practices
 - emphasis on choice to participate, introduction to systems through community centers
 - no hidden fees, requirements, obligations
- 97% of PNG citizens are familiar with solar systems
- Most have or are familiar with cell phones and need reliable energy to charge them
- 98% of global biogas users who interviewed in a World Bank study reported saving time in cooking
- 1-3 hours a week spent collecting wood or other fuel, **260-780 hours per year saved** per household by using biogas
- Successful in other rural communities around the world
- Low technology risk and easily maintainable
- Widespread use in India and China
 - reduced household expenditure
 - reduced time spent gathering supplies (e.g. wood)

 Did not report saving time

Source: IRENA Biogas Survey, IWGIA, PNG Government Embassy, Lighting Pacific, New Zealand Foreign Affairs & Trade

98%

Unfamiliarity of Biogas Solutions

Sustainability

What is the environmental impact of this plan?	 A majority off-grid solution is the only environmentally conscious solution for electrification in PNG Significant on-grid expansions are not only environmentally destructive, they also aren't financially viable Farmers carry out around 46% of deforestation for lighting and cooking fuel, which will be replaced by sustainable energy and clean cooking fuel Energy demand growth will be almost exclusively by supplied from renewable sources such as hydropower and solar 80% of Papua New Guineans are living by subsistence or semi-subsistence farming, with a strong desire to continue this lifestyle Only feasible plan to protect biodiversity, land, and lifestyle
---	--

How does this plan help PNG to achieve the UN's SDGs?

- Implementation of off-grid solutions helps PNG work towards SDG 7 (detailing universal electricity access)
 - Biogas and Solar-Home solutions have experienced success in comparable countries
- Puts **PNG on track to achieve Vision 2050**: Electricity generation solely through renewable sources
- Widespread **electricity access acts in symbiosis with other SDG's**, providing structural support to education and health-related goals
 - Storage of vaccines
 - Reduction in maternal, infant and child mortality
 - Many related benefits of internet access
 - Reduction in crime as a result of after hour community lighting
 - Accelerated economic growth
 - Other tangential benefits

		Source: ADB Power Se	ector Development Plan, PNG Natior	nal Strategic Plan, UN SDGs, IRENA
Problem	Solution:	Solution:	Solution:	Solution:
Overview	On-Grid	Off-Grid	Cultural	Financing 28

Economic Benefits of Electrification

Estimated Benefits of Electrification at 70%								
Country	GDP per Ca	pita	Electrifica	tion	Urban	Rural	kWh Usage	Households
China	11			100%	100.0%	98.0%	3,292	1,353.3
Malaysia	22			99%	99.8%	98.0%	3,989	29.5
Vietnam	5			96%	98.5%	94.9%	1,207	86.1
Indonesia	9			94%	98.9%	89.4%	670	235.2
Korea, Rep.	32			93%	93.9%	90.5%	9,605	46.9
Philippines	6			83%	94.4%	72.8%	623	82.0
Singapore		75	7	73%	72.6%	64.3%	8,150	3.9
Lao PDR	4		60	5%	94.3%	52.0%	425	4.5
Myanmar	4		49%		92.0%	28.4%	146	26.0
Papua New Guinea	3		13%		63.3%	7.6%	426	1.1

>30% increase in GDP per Capita

> from sectors with increased electrification

~50% reduction

in infant mortality rate aligning with Philippines' level

43% improvement

> in labor force participation rate aligning with Philippines' level

>95% Renewable

> energy sources, preserving and protecting the environment

Source: EY, CIA World Factbook, World Bank, PNG Department of Treasury

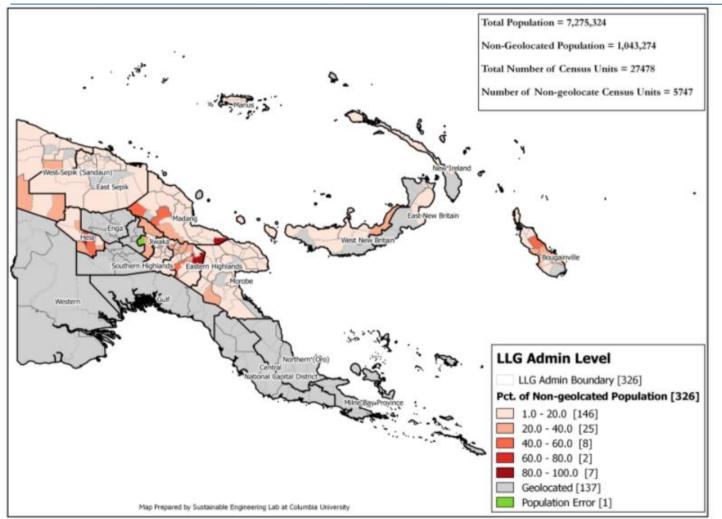
Problem Overview	Solution: On-Grid	Solution: Off-Grid	Solution: Cultural	Solution: Financing ²⁹
				0

The leaders of Australia, Japan and New Zealand joined U.S. Vice President Mike Pence in signing the partnership accord, which aims to connect 70% of the population to electricity by 2030, up from 13% currently.

Lifting electricity supply has been identified as one of the key goals of the country's <u>Development Strategic Plan</u>. Launched in 2010, the policy called for 70% of the country's people to be connected to electricity within 20 years. It projected that achieving the 2030 goal would lift gross national income by 12% and GDP by 10%.

But progress has been extremely limited – with a lack of funding, a complicated government and regulatory regime, and the difficulty of delivering services in one of the world's most rugged and diverse countries, where four in five people live in traditional rural settings.

3. **Sector issues.** Despite ongoing improvements to the power sector, only 12%⁵ of PNG's population has access to electricity, and grid penetration in rural areas is less than 4%. PNG's per capita consumption ratio of electricity is also one of the lowest in the world.⁶ The country's


Solar Panel & Battery Costs

BLUESUN						
		2.5kwh 4.8kwh home solar sys ★★★★ ^{5.0}	stem	o4 Lithiu	um ion battery	li-ion lithium battery fo
Mono 330W	POWENWALL	2 - 19 Packs \$520.00	20 - 49 Packs \$480.00		>=50 Packs \$450.00	
Europe warehouse tax free price solar		Battery Type:	pack	1		
panel 300w all black mono 300w		Nominal Capaci. Nominal Voltage				
US \$72.60-\$82.50 / Piece		Shipping:	Support Sea freight	Land frei	ight	
30 Pieces (Min. Order)	\oplus View larger image	Lead Time:	Quantity(Packs)	1 - 20	>20	
8YRS Bluesun Solar Co., Ltd.			Est. Time(days)	15	Negotiable	
√erified 🔞 ★★★★★ (73) ⇔ 96.4%	Add to Compare	Customization:	Customized logo (M Customized packagi Graphic customizatio	ing (Min. (Order: 10 Packs	
"Easy transaction" (5)		Samples:	\$600.00 /Pack 1 Pa	ack (Min.	Order) 🕎 Buy	Samples
🖂 Contact Supplier 💧 👌			nce protects your Alibab			
			Freight Compare Rat			
		Payments: VISA	🡥 🏹 Online Transf	er é Pay	WesternUnion W	

Geospatial Model

This is by far the dominant sector in which pigs are largely run free range scavenging but generally confined at night and fed food wastes, food crop surpluses, sweet potato and/or coconut. This production is a continuum of a 5,000-year tradition. The structure is differentiated by location. The highland provinces with 45% of the total rural households have 78% of households owning pigs. Four provinces have over 80% and Enga has 89%. Pigs/person ratios average 1.2 in the central highlands, dropping to 0.6 in the highland fringes. Utilisation is largely geared to ceremonial feasting. Lowland and island provinces have pig ownership ranging from 18 to 58% of rural households with pigs/person ratios averaging 0.3 for the inland lowlands and some coastal areas and 0.1 for most coastal areas and islands. Utilisation here tends to be more opportunistic with increasing live pig sales for cash needs. Nationally some 50% of pig owners have indicated some intent to sell pigs. In general, traditional smallholders have very little involvement in formal marketing. Their requirements may be to improve productivity rather than profitability. Some farmers may also keep other livestock, especially village chickens.

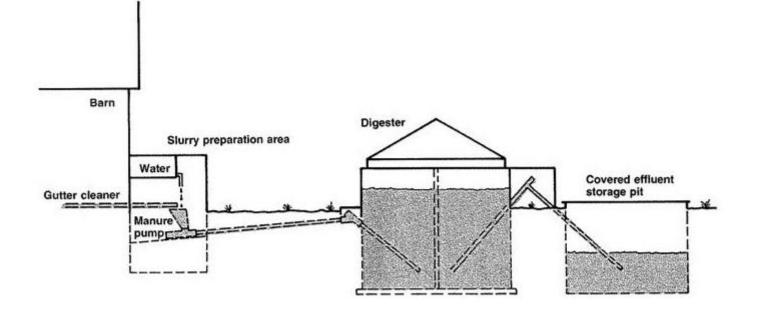
Biogas Technical Feasibility

If the live weight of all animals whose dung is put into the biogas plant is known, the daily gas production will correspond approximately to the following values:

- cattle, buffalo and chicken: 1,5 liters biogas per day per 1 kg live weight
- pigs, humans: 30 liters biogas per day per 1 kg weight

Energy Production Potential

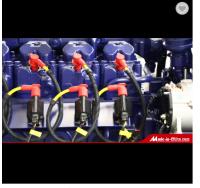
Appropriate feedstock for electricity-generating biogas plants is available in adequate quantity in many countries. Small and mediumsize biogas plants could provide a considerable contribution to national electricity generation in such countries. However, in comparison to industrialised countries, only very few small and medium sized biogas plants are used for electricity generation in Africa, Latin America and even Asia.


Electricity production from biogas can be a very efficient method for producing electricity from a renewable energy source. However, this applies only if the emerging heat from the power generator can be used in an economically and ecologically sound way. The average calorific value of biogas is about 21-23.5 MJ/m³, meaning that 1 m³ of biogas corresponds to 0.5-0.6 I diesel fuel or an energy content of about 6 kWh. However, due to conversion losses, 1m³ of biogas can be converted only to around 1.7 kWhel.

1,460,000 cubic feet (42,000 m^3 of biogas from the manure of 100 cows. This biogas has the energy value of 876,000,000 Btu (924,000 MJ).

If we know the energy value of conventional fuels, we can figure the equivalent price of conventional fuels to biogas by dividing the annual costs by the amount of fuel equivalent to the energy in the biogas produced:

		1	
Fuel	Energy per unit	Fuel equivalent to 876,000,000 Btu (924,000 MJ)	Equivalent price
Piogas	600,000 Btu/1000ft ³	1,460/1000ft ³	\$3.80/1000ft ³
Biogas	22.2 MJ/m ³	42,000 m ³	\$.13/m ³
Natural gas	1,000,000 Btu/1000ft ³	876/1000ft ³	\$6.34/1000ft ³
Natural gas	37 M I/m ³	25 000 m ³	\$ 22/m ³



Biogas System Setup Cost

Source: Alibaba, PSU

0	nerator Set Price 10kw Int Generation Hot sale p		200kW 1	mW f	or		Start Order	
★ ★ ★ ★ ★ 5.0 1 Re	eviews 2 buyers						Contact Supplier	
\$4,400.00 - \$2	70,000.00 / Set 1	Set (Min. Order)					Call us ⊊ Add to cart	
Output Type: AC	Three Phase						😑 Gold Supplier	
Rated Power: 10k	KW/12.5kVA	\$4,400.00	- (0	+		Haitai Power Machinery Jurer, Trading Company	1
20k	kW/25kVA	\$5,300.00	- (0	+	CN 9	YRS 👸 5.0 * 💎 💎	
40k	kW/50kVA	\$8,100.00	-	0	+		sponse Rate for 5 Transactions	
All	17 Options \bigtriangledown					-	n-time delivery rate	

37

rfhShare

Customization: Customized logo (Min. Order: 1 Sets)

Ready to Ship 📀 In Stock 😔 Fast Dispatch

Foundation (including sludge auger housing)	\$2,500
Digester (including insulation)	4,600
Effluent storage	1,900
Roof (including insulation)	1,500
Gas pump	700
Boiler	600
Hydra-ram manure pump (including hydraulic unit)	4,900
Supplies and labor (estimated)	3,300
Total initial cost	\$20,000

Economic Benefit Estimation

1.1 Economic impacts of individual sectoral strategies by 2030

Sector	2030 Target	Increase in GNI (national income)		Increase in GDP (economic output)		Increase in tax revenue
		per cent	K 'million	per cent	K 'million	K'million
Land reform	Effective land reform	52.2	12,701	57.3	18,361	9,322
Law & order	55% fall in crime	61.7	15,027	48.2	15,450	6,230
Education	Quality education	7.2	1,910	9.6	3,520	960
Higher education	265,000 graduates	16.7	4,070	20.0	6,410	720
Road transport	Triple road network	8.9	2,170	8.9	2,850	770
Water transport	Triple capacity	4.2	1,030	3.7	1,200	390
Electricity	70% access	12.0	2,920	10.1	3,250	1,190
Agriculture	Internationally competitive	29.9	7,230	25.4	8,090	2,110
Fisheries	Double tuna revenues	0.3	80	0.1	23	60
Forestry	80% of exports processed	1.3	300	1.2	370	60
Oil	Maintain 2009 production	3.3	800	4.7	1,500	480
Gas	2 large projects	39.7	9,670	60.2	19,310	5,130
Mining	Double mining exports	8.0	1,930	10.9	3,480	790
Manufacturing	Triple production	23.8	5,760	22.9	7,300	2,200
Tourism	1.5 million tourists	30.0	7,320	21.2	6,810	2,440

1.2 Employment impacts of individual sectoral strategies by 2030									
Sector	2030 Target	Increase in formal jobs		Increase in informal jobs		TOTAL			
		Rural	Urban	Rural	Urban				
Land reform	Effective land reform	320,200	113,800	246,300	2,200	682,500			
Law & order	55% fall in crime	46,700	373,600	173,200	6,300	599,800			
Education	Quality education	9,600	5,800	2,300	-1,600	16,100			
Higher education	265,000 graduates	33,200	143,800	29,900	1,400	208,300			
Road transport	Triple road network	13,100	45,200	59,600	1,300	119,200			
Water transport	Triple capacity	5,800	19,700	28,000	600	54,100			
Electricity	70% access	22,000	49,200	30,300	-800	100,700			
Agriculture	Internationally competitive	155,700	68,600	38,200	4,900	267,400			
Forestry	80% of exports processed	-1,400	9,900	1,800	200	10,500			
Fisheries	Double tuna revenues	-100	700	100	0	700			
Oil	Maintain 2009 production	-2,400	5,500	-900	100	2,300			
Gas	2 large projects	-20,200	79,900	-4,600	1,200	56,300			
Mining	Double mining exports	1,100	30,800	7,800	400	40,100			
Manufacturing	Triple production	28,800	74,000	71,500	3,200	177,500			
Tourism	1.5 million tourists	-36,800	286,700	17,700	42,900	310,500			

Source: 2010-2030 PNG Strategic Initiative