Switch Energy Case Competition 2022

Team Nimbus 2.0

Team Number - 148

Shivam Kumar Roop Srushti Bhamare Shrut

Roopmati Meena Shruti Prajapati

Indian Institute of Technology Bombay, India

Mentor: Mr. Patrick Welch

Country: Ghana

Overview Ghana

Rural population: 13.3 million (2022)

GDP per capita: 2329 US\$ Global ranking: 75th

Average family income: 82 \$

Access to electricity: 86%

Main Economic Sectors: Agriculture, Industry & Services

Area: 238,533 km²

Access to clean cooking fuel: 22%

HDI Ranking: 133

Inflation rate (July-Sept' 22) : 34%

CO₂ emission per capita: 0.7 metric ton

Life expectancy: 64 years

No. of states: 16 Capital: Accra

Ref: World bank, statistica

GHANA	Generation capacity	Access to electricity	Renewable energy	Access to clean cooking fuel		
2020 Target	22.3 TWh	100%	10%	50%		
2020 Reality	14 TWh	86%	<1%	22%		

3

Energy Timeline Ghana

Problem Overview

Problem **Energy Poverty**

Problem Cooking Fuel Crisis

Fig: Year wise % population with clean cooking fuel

Fig: % cooking share in households

Exposure to smoke from solid fuels or inefficient fuels causes nearly 18,000 deaths/year in Ghana (WHO, 2018)

Chronic illnesses & acute health impacts:

Childhood pneumonia, cataracts, lung cancer, bronchitis, cardiovascular disease, and low birth weight

Women and young children most affected

> 2200 children die in Ghana / year due to acute lower respiratory infections (WHO, 2018)

Ref: World bank, Maxwell et al., 2020

Problem Unreliable & Unaffordable Electricity

Fig: Access to electricity in Ghana

Rural: 76%

Urban: **84%**

reliability: 42%

Electricity

T&D losses: 25%

Ghana has moderately good but **expensive** electricity access, & the **supply** is **highly unreliable**

Design

Solution Methodology Objectives & Targets: 2050

Objectives

-To cover **maximum population till 2050** with clean cooking fuel & reliable electricity.

-To **reduce** cooking fuel cost & electricity **prices.**

-To **reduce** indoor **pollution** & related health hazards

-To reduce **GHG** emissions & improve socio-economic standards

-Population with clean cooking fuel till 2050: **90-100%**

-To provide **90-100%** accessible & reliable electricity

-Reduce cost of cooking fuel **upto 80%** & for electricity upto **60-70%.** Factors taken into account while deciding objectives & targets

> -Potential of various cooking fuel & renewable energy resources in Ghana

-Allotted Budget

-Ability to develop & progress

-37.2% -22.69	-4.7%	All Sect Hotels & Mining Forestry Professi Services Health & Trade; R Manufe +0.5% Livestoc +1.5% Transno	ors k Restaurants & Quarrying & Logging onal & Administrative s Social Work epair of Vehicles cturing ervice Activities k
		+1.5% Transno	Contraction of the second s
		+2.5% Educati +2.6% Electrici +3.3% Public A +3.4% Crops +3.7% Constru +5.7% Informa +6.6% Water 8 +10.7% Real Est	rt & Storage in dy diministration ction tion & Communication - Sewerage ate a & Insurance Activities

Design

Solution for Cooking Fuel Crisis Cooking Fuel: Current Scenario

Current Scenario:

- 1. LPG is the only clean cooking fuel in Ghana
- 2. Merely 22% population has access to LPG

Current Policies:

- Launched in 2013, the Ghana Sustainable Energy for all (SE4ALL) Action Plan provides the current framework for household energy.
- The draft 2018 energy policy aims to address institutional and market barriers to LPG uptake. Targets in the draft policy include increasing adoption of efficient cookstoves by 20% by 2020, and increasing LPG use from 18% to 50% by 2020. These target are far away from reality.

To cater to remaining population, other sources needs to be explored...

Fig: Population % with LPG access till 2050 (Prediction)

Region	Fuel type (%)									
	Non-wood	fuels	Woodfuels							
	Electricity	LPG	Kerosene	Agric residue	Others	Firewood	Charcoal			
Ashanti	0.6	7.5	0.7	0.1	0.7	50.6	39.9			
Northern	0.1	1.3	0.2	0.2	0.1	81.8	16.4			
Upper East	0.4	1.2	0	32.8	0.2	55	10.4			
Upper West	0	1.1	0.2	-	0.3	80.2	18.2			
Western	0.2	6.3	0.3	0	0.6	65.2	27.3			
Central	0.1	4.6	0.9	0.1	0.2	63.1	31.1			
Gt. Accra	0.3	29.4	2.1	-	_	7.2	59.8			
Volta	0.1	2,3	0.4	0.2	0.1	73.2	23.7			
Eastern	0.3	4.6	0.5	0.4	-	71.2	22.9			
Brong-Ahafo	0.1	2.7	0.3	0.2	0.6	77.6	18.5			
Ghana	0.3	8.5	0.7	1.3	0.5	56.6	32			

Fig: Region wise household cooking source in Ghana (2015)

11

Solution for Cooking Fuel Crisis: Comparative Analysis Alternatives cooking fuel sources

	Conventional Stove	Biogas	Improvised cooking stove	Solar cooker	Electric stove	LPG
					<u>()</u>	LPG
Type of Input	Wood, coal, charcoal, cow dung, etc.	Agricultural, animal, & human, municipal waste	Wood, coal, charcoal, cow dung, etc.	Sun	Electricity	LPG
Ease of availability	Require daily collection time of 3-4 hrs	Weekly activity of waste segregation	Require daily collection time of 3-4 hrs	No efforts but subjected to sun's availability	Subjected to reliable electricity supply	Subjected to LPG refill
Affordability	Cheap	Cheap	Cheap	Cheap	Expensive	Expensive
Health Hazards	Very Hazardous	Nil	Hazardous	Nil	Nil	Nil

Design

Solution for Cooking Fuel Crisis Biogas: Design & Site Selection of Plant

- No moving parts
- No rusting steel parts hence long life (20 years or more)
- underground construction
- Affording protection from winter cold and saving space.

Construction of Biogas Plant

- Mixing tank: Present above the ground
- Digester: Biological reactions occurs
- Overflow tank: Spent slurry get stored

Fig: Design of fixed dome with inbuilt gas holder biogas plant

Site Selection Methodology

Step 1: Selection of the region

Step 2: Selection of the neighbourhood

Step 3: Selection of the site

Site selection differences in rural & urban area:

- In rural area, given site selection methodology will be used.
- For urban area, according to area & population of city which are using solid cooking fuels, distances will increase in the ratio of those parameters.

Design

Solution for Cooking Fuel Crisis Biogas

Sources of Biogas generation in Ghana

			ف
Municipal	Animal waste	Field crop	Human
solid waste		residue	excreta

Residue type	Quantity (Mt)	Biogas (Mm³ CH ₄ /year)
Field crop residue	20	1600
Process residue		750
Wood waste	0.35	19
Animal waste	2860	100
Municipal solid waste	2.1	230
Municipal liquid waste	0.56	17
Total	2883	2716

Table: Biogas Generation Potential in Ghana(Year: 2020)

Fig: Year wise potential of waste

Implementation

Solution for Cooking Fuel Crisis Biogas: Projections for Year-wise Capacity Addition

Implementation Roadmap for Biogas

Table: State wise capacity addition till 2050

Implementation

Solution for Cooking Fuel Crisis LPG & Improvised Cookstoves

Proposed interventions for LPG adoption:

- (a) Expanded distribution of LPG in rural areas
- 1. A cylinder recirculation program replaces the current system of individual ownership of cylinders
- 2. Motor-king (motorcycle with smaller trailer) distribution network from refilling stations to village retail outlets

(b) Elimination of LPG taxes: carbon credit

Subsidizing 23% tax on LPG by the government for the rural population

Fig: Proposed % clean cooking fuel access

LPG & Gyapa Stoves: Cost for consumers & Benefits

LPG Stoves & cylinder cost:

Cost of LPG stove	US\$ 30
LPG cost/litre	US\$ 0.5

LPG Benefits:

- Deployment is easier in urban areas so prefer urban areas first forthe LPG deployment.
- Easy to transport & skilled labours are present in the supply chain of LPG

Cost of Gyapa stove	US\$ 17.8
Stove O&M	US\$ 2.1
Total cost	US\$ 19.9

Gyapa Benefits:

- Faster cooking & 2.5-60% less fuel required
- Less smokey
- Distribution country wide at US\$ 110 Million

Solution for Cooking Fuel Crisis Implementation Roadmap: Biogas & Gyapa Stoves

Implementation

Solution for Cooking Fuel Crisis Implementation Roadmap: Supply Chain Analysis

Tapping of Waste Material for Biogas

Step 1: Aware people to segregate municipal solid waste into dry waste & wet waste. Inform them to store Agricultural waste & animal excreta. Human excreta will get collected through pipelines reaching directly to the biogas plant

Step 2: Govt trucks will collect all the waste in (1-2 small trucks for each biogas plant) & they will transport it to Biogas plant

Solution for Unreliable & Unaffordable Electricity

SOLAR

Solution for Electricity Crisis Current Scenario

Current Scenario:

- Ghana's power supply sources are from hydroelectricity, thermal fueled by crude oil, natural gas and diesel, and also imports from La Cote D'Ivoire. Ghana also exports power to Togo, Benin and Burkina Faso.
- The total installed capacity for existing plants in Ghana is 4,132MW consisting of Hydro 38%, Thermal 61% and Solar less than 1%

Current Policies:

- Renewable energy Act (Act 832), passed in 2011, seeks to create the enabling environment for attracting private sector investment in the renewable energy sector to ensure the achievement of the 10% policy target
- National roadmap to integrate nuclear power into Ghana's energy mix has been developed and accepted by the International Atomic Energy Agency (IAEA)

In 30 years, electricity demand is predicted to increase by 6x

Fig: Predicted electricity demand till 2050

Ref: Ministry of Energy, Ghana

Solution for Electricity Crisis: Comparative Analysis Alternatives Renewable Sources

Design

Solution for Electricity Crisis Solar PV + Storage

generation from different sources

Solution for Electricity Crisis

Implementation Roadmap: Solar PV + Storage

Implementation

Solution for Electricity Crisis Implementation Roadmap: Supply Chain Analysis

Financial Plan: Biogas

Financial Plan Biogas: Background

Cost of Biogas Plant over the years

	2020	2025	2030	2035	2040	2045	2050
Fixed capital cost for 1 m ³ of biogas plant (US\$)	90	110	137	170	207	253	280

Cost of biogas for consumers

Biogas required per household	1.6 m³/day
Selling price to customer	US\$ 0.035/m ³
O&M cost (% of fixed capital cost)	4
Inflation (%)	2

Finance

Financial Plan: Invest-Recoup-Reinvest Biogas: Roadmap

The government share of expenses at the end of 2050 is US\$ 282.18 Million

Financial Plan: Solar PV

Finance

Financial Plan Solar PV: Model Selection

Only Govt Installations Capital Needed = 38 billion US \$

Model 1

 Exceeding the budget. Not a cheaper option
 Govt past targets haven't been reached yet

Model 2

Only private player Installations & govt. Provides interest free loans.(govt. Pays interest to the banks with 2% interest rate Capital Needed = 2.44 billion US \$

 Exceeding the budget. Not a cheaper option
 Lack of regulations & possibility of natural monopoly

Model 3

Public Private Partnerships

Year	Govt. Contribution
2025	20%
2030	20%
2035	20%
2040	10%
2045	10%
2050	10%

Table: Year-wise government contribution

Financial Plan Solar PV: Financial Results

Table: LCOE of electricity from solar over the years

	2020	2025	2030	2035	2040	2045	2050
LCOE (US\$/KWh)	0.18	0.16	0.14	0.12	0.10	0.08	0.06

Table:Assumptions

Solar PV fixed cost (Million US\$/MW)	0.5
No. of sunshine days	240
No. of sunshine hour	10
O&M cost (% of fixed capital cost)	10
Inflation (%)	2

Financial Plan: Invest-Recoup-Reinvest Solar PV: Roadmap

Finance

Final Fund Break-Up

Finance Combined Financial Plan

- Total budget allocated: 900 Million US\$
- 15% budget of total budget kept as contingency to meet any unexpected financial demands from ongoing projects

Quantitative Metric

	Units/US\$	Beneficiary/US\$
Biogas	479 m³/US\$	0.4 people/US\$
Electricity	4269 KWh/US\$	0.04 people/US\$

Monetizing Carbon Credits

Finance Carbon Credits

Definition: Carbon offsets occur when a polluting company buys a carbon credit to make up for the greenhouse gas it has emitted

Carbon credit demand expected to increase 15x by 2030 and 100x by 2050!

Cost for carbon credits expected to reach between US\$20 and US\$50 per metric ton of CO_2 by 2030

African Development Bank (AfDB) has launched a two-year technical assistance program – **African Carbon Support Program**

Top companies buying carbon credits

Finance Carbon Credits: Implementation Plan

Ghana is expected to generate a cumulative revenue of <u>US\$ 500 million</u> by end of 2050

Innovation

Carbon Credits: Use of fund

Impact Analysis

Impact Analysis

Social & Environmental Impact

poverty

energy

of reducing

Benefits

Our solution methodology impacts at least 10 sustainable development goals

Economy

Revenue generated Debts settled Increase in long-term GDP More domestic and foreign investment

Environment

Reduction in GHG emission Reduction in deforestation

Health

Decrease in mortality rate Reduction in respiratory disorder Increase in life expectancy

Welfare

Education Skill training Cheaper power Improved standards of living

Policy Recommendations

Nimbus 2.0

We are Team Nimbus from Indian Institute of Technology Bombay, India. We thank Switch Energy Alliance for organizing the competition and providing assistance & support during the competition. We are extremely thankful to our mentor Mr. Patrick Welch for guiding us & supporting us throughout the competition

Thank You

Back-up

Solution for Electricity Crisis

Solar PV + Storage: Feasibility Analysis

Fig: Proposed Year-wise installation plan

Feasibility analysis

Solution for Electricity Crisis

Solar PV + Storage: Feasibility Analysis

Fig: Comparative analysis on capacity multiplication

45

Design

Solution for Electricity Crisis Taping of Solar PV Potential

Ref: SEDAC, NASA

Ref: Clean Technologies and Environmental Policy

Fig: Solar insolation

Ref: Global Energy Network Institute

-	•	
	Northern & Central regions	Southern Region
Solar Insolation	Excellent	Average
Population density	Less	High
Interpretation	 Availability of empty land with great solar potential. Long transmission lines needed to bring electricity to southern region. 	 Average potential. Benefitted with readily available gridlines

Executive Summary

*

Problem Overview	* * - -	Ghana at a glance Energy Poverty in Ghana Cooking fuel crisis Unreliable & unaffordable electricity
Clean cooking fuel	* * *	LPG and Biogas Technical & feasibility analysis Implementation approach & Timeline
Flootrigity"		
Affordable, accessible & reliable	* * *	Solar PV + Battery storage Technical & feasibility analysis Implementation approach & Timeline
Finance	* * *	Invest-Recoup-Reinvest model PPP model for electricity Cash-flow chart for investment
Environmental & social impact	* * *	Reduction in carbon emission Carbon credit market exploration SDG analysis Policy recommendations

47