TEAM NUMBER: 186 TEAM NAME: THE CATALYSTS

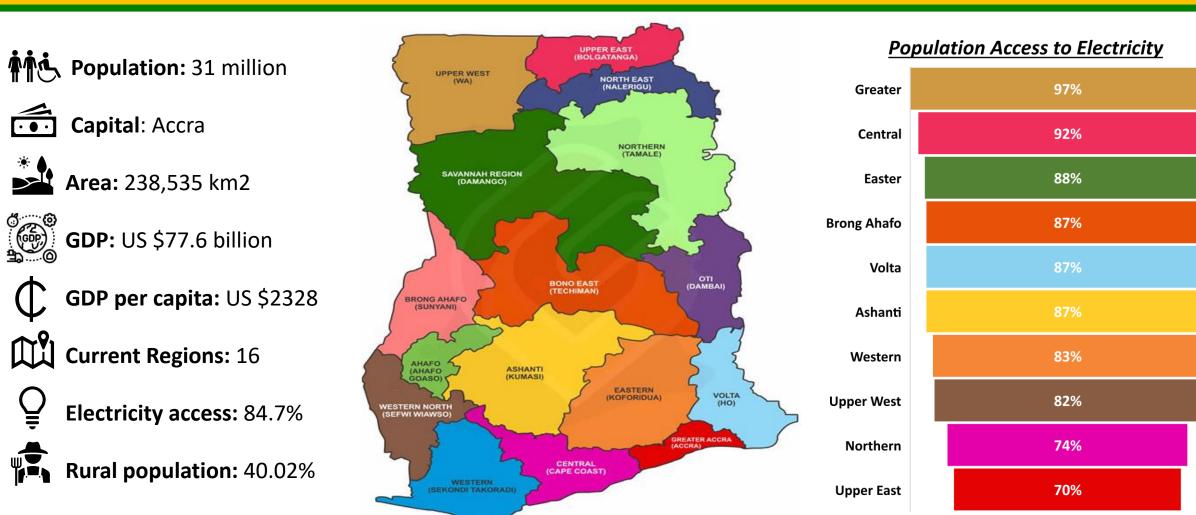
AISHA RANI

88

SAURAV KUMAR SHARMA

DIVYANSH VERMA

AYUSH DWIVEDI


MENTOR NAME: CHRIS STOREY SELECTED COUNTRY: GHANA HOME COUNTRY: INDIA

Â

Capital: Accra

GHANA

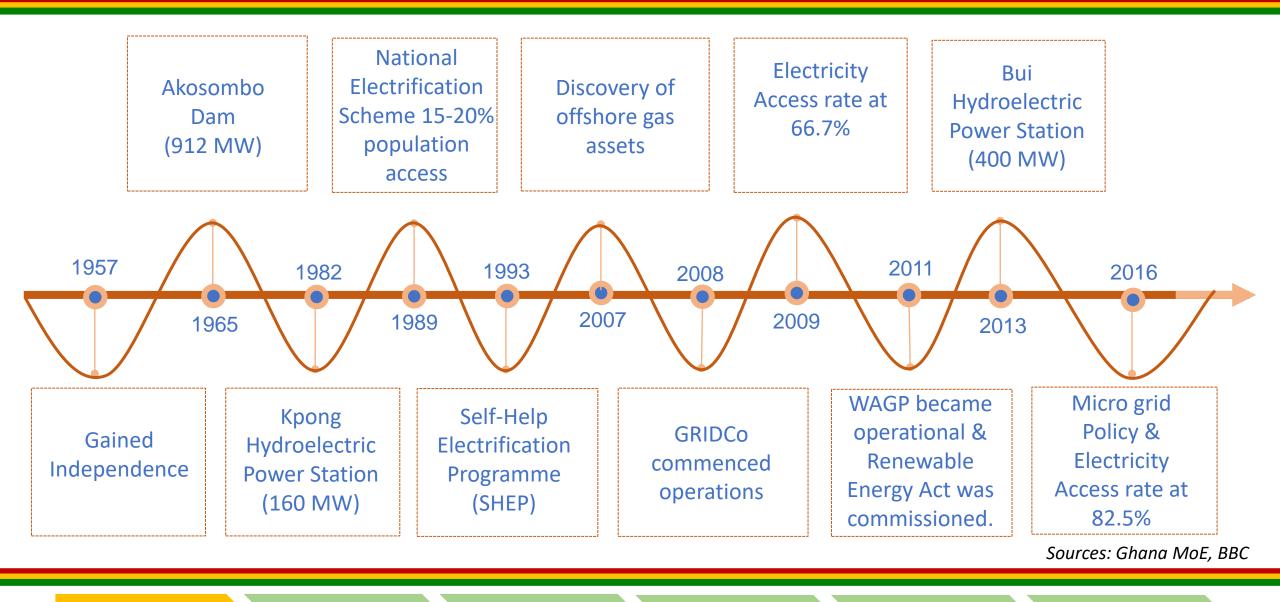
Sources: World Bank, Statista

GHANA

PROBLEM

SOLUTION

FINANCE


COMMUNITY

APPENDIX

1

TIMELINE OF ENERGY SECTOR

GHANA

PROBLEM

SOLUTION

FINANCE

COMMUNITY

WHAT ENERGY POVERTY MEANS TO GHANA?

Affordability 13.3% of people live on less than \$1.90/day.

Clean Fuel 77% people use wood and charcoal as cooking fuel.

Air Pollution Ghana's annual mean concentration of PM2.5 is $31.1 \mu/m3$ which is 6 times higher than safe limit of 5 $\mu/m3$ set by WHO.

Power Crisis
According to ISSER, Ghana loses approx. \$2.2 million daily and
\$686.4 million annually (translating into approximately
2% of GDP) due to power crisis.

Sources: WHO, World Bank, GhanaWeb

GHANA

PROBLEM

SOLUTION

FINANCE

COMMUNITY

PROBLEM OVERVIEW

Regular Power Outages is famously called as 'DUMSOR' in Ghana.

Reasons for Power Outages (DUMSOR):

- Tripped transmission lines.
- Gas/Fuel related shortages.
- Reduced water level at Bui reservoir.

Effects of DUMSOR years on ECG:

- 25% of electricity bought was not sold.
- Insufficient recovery rate.
- Accumulation of debt from public services.
- Debt increased to 2.4 billion dollars in 2017.

ECG: Electricity Commission of Ghana **IPP**: Independent Power Producers

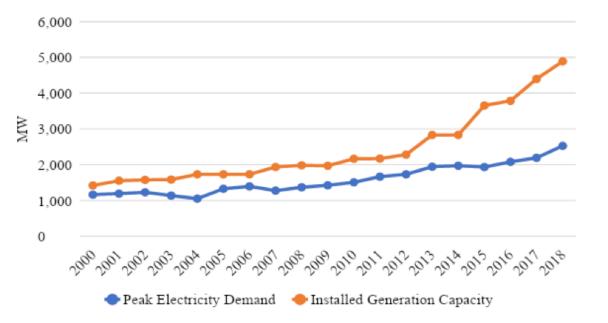
PROBLEM

Step taken by government- Arrival of IPP

- Came in the energy scenario to solve the issue of power cuts (DUMSOR).
- Led to a rapid development of the electricity power grid.
- Left public operators in poor financial health.

Problem with the solution- Pitfalls of 'take or pay' contracts:

- Lack of flexibility
- Inflated prices
- Fixing prices in foreign currency
- Threatening competition
- Political expediency


Sources: Ebenezer et al. 2017, International Trade Administration

GHANA

SOLUTION

FINANCE

COMMUNITY

Ghana's maximum electricity demand: 2700 MW Ghana's current electricity availability: 5083 MW

Hence, Ghana has **overproduction of 2383 MW** which costs the government around **500 million USD** every year through 'take or pay' contracts.

CASE STUDY ON VALCO

Few things about VALCO or Volta Aluminium Company:

- Started in 1948.
- Was a joint venture with Kaiser Aluminium and ALCOA.
- Consumed 22% of total electricity produced by Akosombo Dam in 2003.
- Contributed 8% to Ghana's GDP in 2003
- In June 2008 ALCOA sold 10% stake to Ghana government.

Sequence of shutdowns:

- Electricity irregularities lead to its temporary shutdown.
- In May 2003, VALCO shutdown completely.
- Reopened in 2006.
- In early 2011, VALCO was operating at 20% of its capacity.

Conclusion: Stable electricity is extremely important for the smooth functioning of manufacturing sector.

Sources: Oxford Business Group, Statista, GhanaWeb

GHANA

SOLUTION

- An amount of **US\$ 63.23 Million** is required every month (US\$758.8 Million for the year) to procure Natural gas and HFO for the operation of thermal power plants in 2021.
- **59.9%** electricity is produced by thermal power plants based on natural gas.
- Ghana receives most of its oil and natural gas from Jubliee, OCTP Sankofa-Gye Nyame and TEN fields.
- Huge Import bill leading to reduction in foreign reserves.

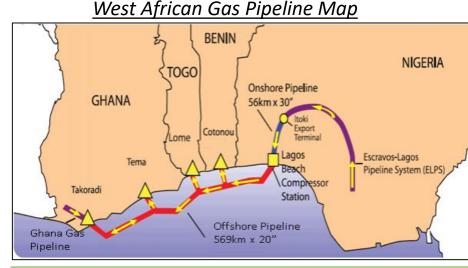
Dependency on West African Gas Pipeline:

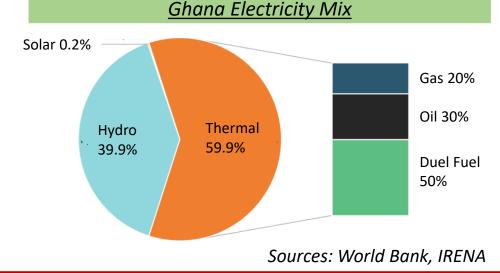
- Led to serious near-term gas scarcity.
- Maintenance activities leads to shutdown of thermal power plants.
- Several cases of natural gas pressure reduction resulting in few flow disturbance.

PROBLEM

Environmental Impacts:

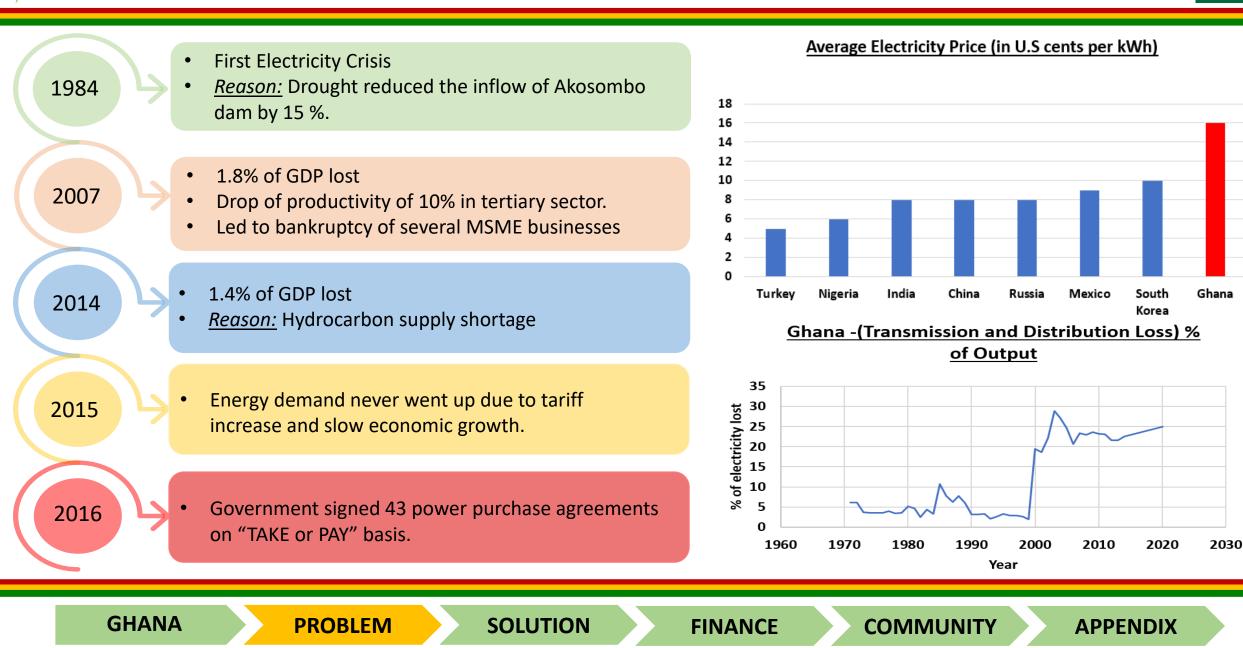
- Increased carbon footprint.
- Increased pollution.


GHANA


Field name	GNPC Share
Jubilee	13.6%
TEN	15.0%
Sankofa	20.0%

SOLUTION

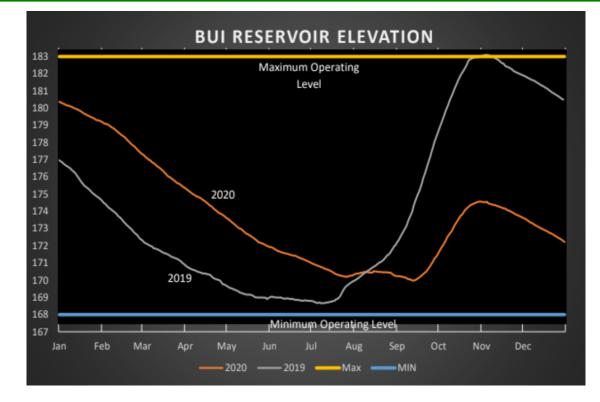
FINANCE


TEN: Tweneboa Enyenra Ntomme OCTP: Offshore Cape Three Points

COMMUNITY

West African Gas Pipeline Map

8



- Declining rainfall and higher evapotranspiration rates in Burkina Faso could reduce the Volta River's annual flow by 24% by 2050.
- Water availability for hydropower generation depends on upper basin dam releases and abstractions in *Burkina Faso. Trans-boundary cooperation* is needed to reconcile basin development plans and address flood mitigation.

Hydropower Plant	Dependable capacity (MW)	Installed Capacity(MW)
Akosombo GS	900	1038
Kpong GS	105	160
Bui GS	360	400

 In 2010, 700,000 people were displaced after heavy rainfall destroyed a dam and in 2015 flash flooding in Accra killed more than 150 people and caused over \$100 million in damage.

 Water level of Bui Dam drops below the operating level of *168 metres* resulting in it being offline for most of the year.

Sources: IFC, Bui Power Authority, VRA

GHANA

PROBLEM

SOLUTION

FINANCE

COMMUNITY

WOOD AND CHARCOAL: A THREAT TO PUBLIC HEALTH

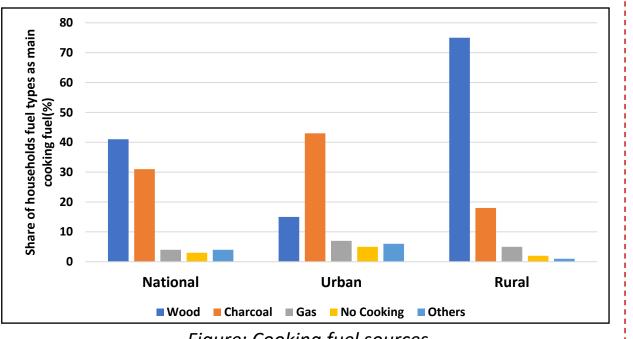


Figure: Cooking fuel sources

- *Firewood* as cooking fuel costs around **\$457 million dollars** annually for the entire low income class (**\$2-\$10 /day**) which accounts **71%** of entire Ghanaian population.

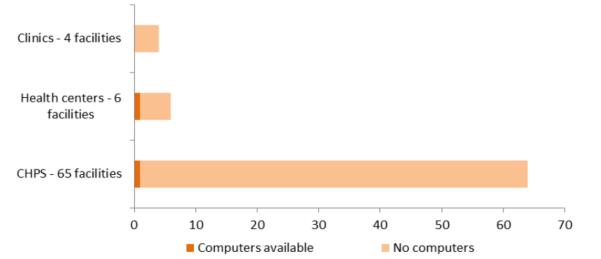
PROBLEM

Cooking Fuel:

- **77% people** use wood and charcoal as cooking fuel.
- Clean cooking solutions are unavailable and costly.
- Burning of wood causes increased health concerns like respiratory and pulmonary diseases.
- According to ISSER, In 2019 the polluter **PM2.5** caused

14,500 deaths in Ghana.

Sustainable Development Goals around the issue


APPENDIX

SOLUTION

FINANCE

COMMUNITY

IMPACTS OF ECONOMIC UNDERDEVELOPMENT ON HEALTHCARE FACILITIES

Fig: Graph representing availability of computers at healthcare centres

PROBLEM

Refrigeration Energy sources per health facility level

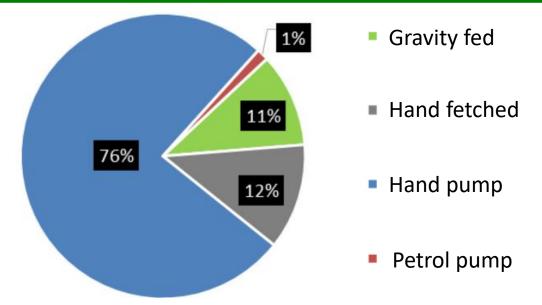


Fig: Graph representing current mode of getting water

- **33% of births** were attended by a **unskilled** health-care professional.
- Under-5 mortality rate is **49**, due to lack of proper medical facilities.

Sources: WHO, health data

11

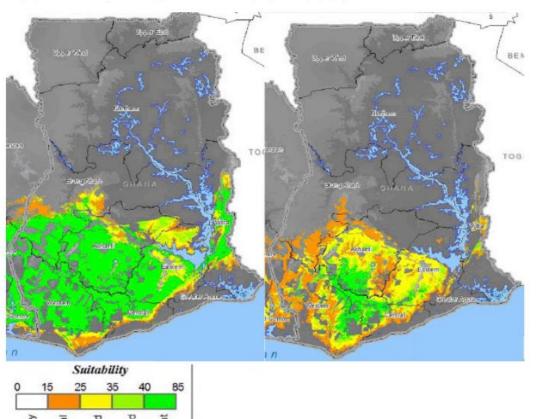
GHANA

SOLUTION

FINANCE

COMMUNITY

APPENDIX


*

- The 2007 floods in the northern part of the country, immediately following a period of drought, affected more than 325,000 people.
- Variation in rainfall due to climate irregularities had a major impact on the production of Akosombo dam which is responsible for about 70% of the country's electricity demand.
- Cassava yields are expected to reduce due to increased temperatures and periods of water stress. Projections of productivity losses are up to 13.5% in 2050, and 53% in 2080.
- Rice cultivation is expected to be subject to a similar decrease of 0-25%.

Take urgent action to combat climate change and its impacts Map 4 Area suitability for cocoa production, current (left) and 2030 (right)

Source: Läderach et al. (2011)

GHANA

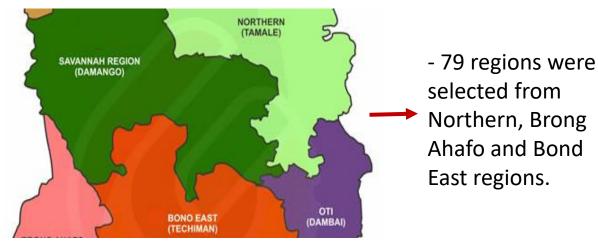
PROBLEM

SOLUTION

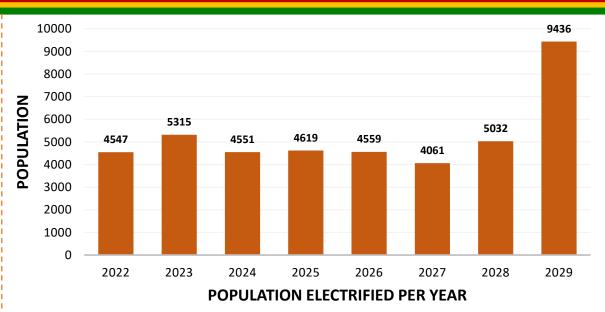
FINANCE

COMMUNITY

SOLUTION


ON-GRID EXPANSION PLAN

79 unelectrified rural communities were modelled.


Assumption:

- 1st year: 30% connection rate
- Low income households resulting in low demand per household.
- Income levels will increase with increased connection.
- 90% will be connected by 2030.
- Total cost for On-grid extension plan is **\$17.2 million** for **79** communities.

PROBLEM

Benefits of On-grid expansion:

- Benefits are worth US \$26.98 million and US\$ 5.28 million dollars in household income and health services respectively.
- Benefit-to-cost(BCR) ratio is around **4.5**.
- According to NDPC, "There will be increase of 46% in household income and improved health services.

Sources: ITA, AfDB

GHANA

SOLUTION

FINANCE

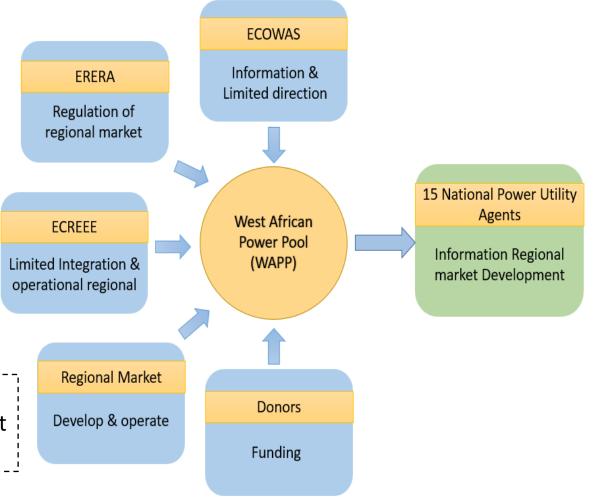
COMMUNITY

Formation of Industrial Hubs	Grid build-out	Set-up of Microgrids	Sell to neighbouring countries
 Formation of Industrial Hubs near electricity generation centres. Incentives by Ghana's government for establishment of free zones and sector-specific industrial parks as part of the government's Industrial Transformation Agenda. The ten-point agenda, introduced in 2017, aims to stimulate local production capacity and position the country as a center for manufacturing in the region. 	 Expansion of transmission infrastructure to bring supply to different corners of the nation. Expansion of transmission lines to specific economic zones of the nation to increase productivity. Government can negotiate partnership with the interested Industries to set up Transmission lines from power plant to the manufacturing Unit. 	 Installation of micro-grids to improve healthcare facilities as well as unstable voltage supply for industries. Rechargeable Lithium Ion battery to aid hospitals and other buildings during grid failure. Battery storage can be used to stabilize those grids, as battery storage can transition from standby to full power within milliseconds to deal with grid failures. 	 Ghana is a member of the West African Power Pool, an initiative by Economic Community of West African States (ECOWAS), designed to develop a power transmission network that interconnects the entire West African Region. Ghana can sell over-produced electricity to neighboring countries through newly made high-power transmission lines.
GHANA PRO	OBLEM SOLUTION	FINANCE COMMUN	NITY APPENDIX 15

 \star

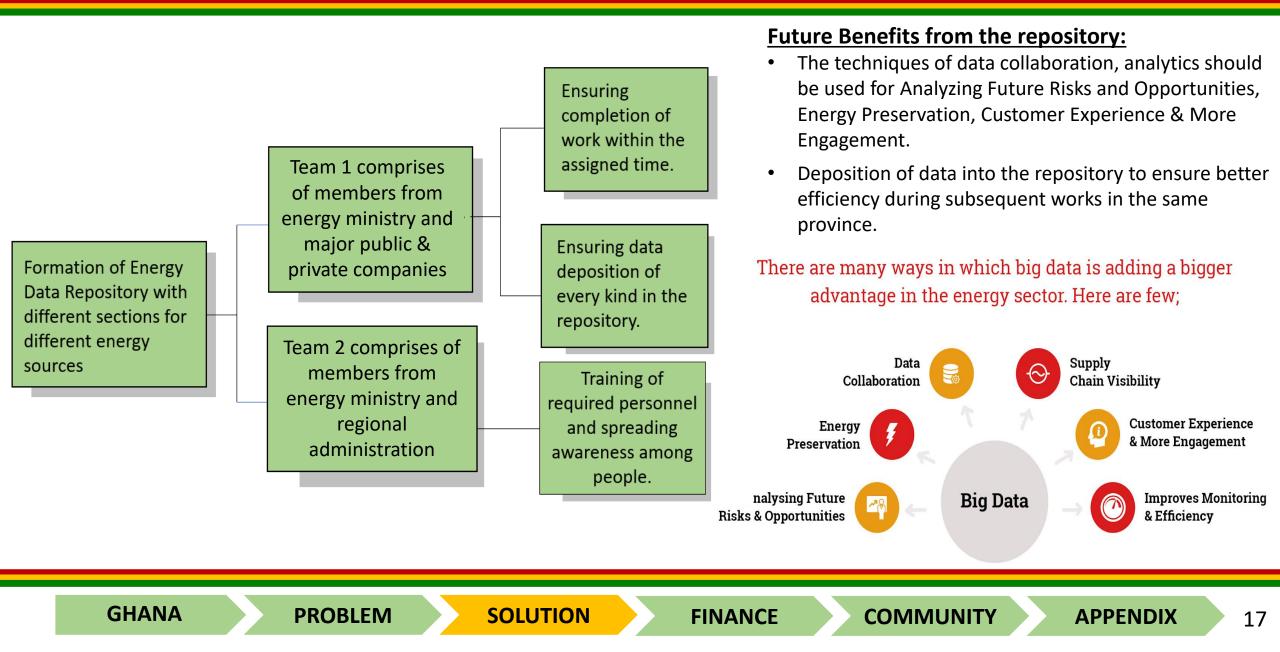
Planned extension:

- *a.* 225 kV power line was introduced between Ghana and Burkina Faso (operational since dec 2018).
- **b. 300** kV coastal line connecting Accra-Lome-Porto Novo.


WAPP (West African Power Pool): Primary objective is to develop a power transmission network that interconnects the entire West African Region.

Country 30.64% of electricity is generated from Akosombo dam whose water-level depends on release from dams of Burkina Faso. Hence, need for maintaining good transboundary relations.

Strengthen the means of implementation and revitalize the global partnership for sustainable development


PROBLEM

SOLUTION

FINANCE

COMMUNITY

 \star

PROBLEM	SOLUTION
Too many power outages especially in northern part of the country.	Makes you completely energy independent: Power Outages are unpredictable and occur without warning.
The regions are very discreetly populated.	Installation possible virtually anywhere.
The cost of current on-grid electricity is constantly increasing with a high prevailing inflation rate in the country.	Sets free from rising electricity charges.
Too many environment problems caused due to electricity produced from crude oil & natural gas.	Environment friendly.
Not too high demand of electricity as most of the regions are underdeveloped.	An easy alternative for the rural areas.

GHANA

SOLUTION

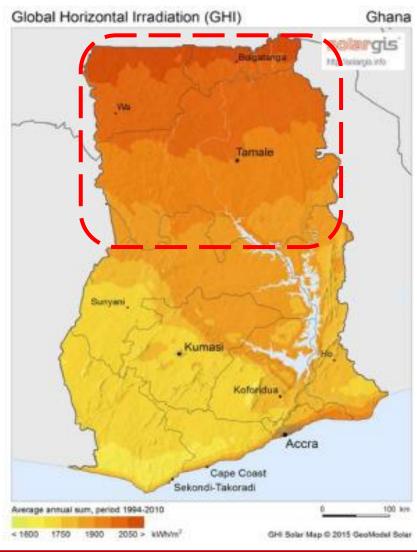
FINANCE

COMMUNITY

SCOPE OF SOLAR IN GHANA

*

Why Solar in Ghana?


- Receives one of the highest amounts of radiation, globally.
- Daily solar insolation levels range from 4 kWh/m2 to 6 kWh/m2.
- Annual sunshine duration range between 1800 and 3000 h per annum.

Solar at various scales:

- a. Community Scale
- b. Household Scale
- c. Installation at healthcare facilities.

Goal 7:

Ensure access to affordable, reliable, ' sustainable and modern energy for all.

FINANCE

SOLUTION

Power Station	Capacity
Nzema Solar Power Station (BUI)(Planned)	155 MW
Kaleo Solar Power Station(VRA)	13 MW
Gomoa Onyaadze Solar Power Station	20 MW
BXC Power Plant in Accra	20 MW
Navrongo Solar Power Station(VRA)	2.5 MW
Cross Boundary Energy Ghana Limited Solar Plant in Tema	970 KW
Solar Plast Project Company Limited rooftop solar PV plant at Miniplast	782 kWp

COMMUNITY

Sources: Statista, VRA, BPA

APPENDIX

GHANA

PROBLEM

19

FROM WHERE TO START?

X	

Region	National	Local Mini	Private	Solar	Solar Lantern/	Other	No
	Grid	Grid	Generator	Home	Lighting		Electric
	Connection			System	System		Power
Western	82.9	0.0	0.1	0.1	0.6	0.8	15.0
Central	84.4	0.0	0.1	0.2	0.9		13.8
Greater Accra	93.7	0.0		0.0	0.1	0.0	5.8
Volta	75.3	0.0	0.0	0.1	0.7	0.3	23.7
Eastern	73.8	0.6	0.2	0.2	0.6	0.2	24.0_
Ashanti	89.2	0.0	0.0	0.0	0.2	0.6	9.5
Brong Ahafo	72.5	0.8	0.1	0.1	0.1	0.2	25.9
Northern	66.1	0.0	0.0	0.4	0.3	0.2	32.1
Upper East	47.7	0.0	0.2	0.7	5.3	0.6	38.8
Upper West	57.8	0.9	0.0	0.4	0.2	0.0	40.5

Fig. representing current electricity scenario of each region of Ghana

Reasons for selecting the above regions:

- a. Discrete population factor
- b. Amount of solar intensity received on average.
- c. There is less industrialization.
- d. Plain lands available for solar plants installation.

Regions selected for initial Off-Grid Solar (OGS):

- a. Upper West
 - b. Upper East
- c. Northern

Assumption:

- a. Number of member in a family: 6
- b. Average solar intensity is assumed to be 5.5
 kw/sq m/day for Northern, Upper east and Upper west region.

Table representing information about chosen regions

Region	Population	Families	Electricity demand (Kwh)
Upper East	688328	114721	424468
Upper West	1034688	172448	638057.6
Northern	2445031	407501	1507787

Total electricity demand = 2570314.15 kwh

GHANA

FINANCE

SOLUTION

SOLAR AT VARIOUS SCALE

Solar Home Systems

Community Scale Solar System

CHALLENGES

- High cost of inverters and batteries, making systems expensive.
- Households with seasonal income have difficulty making payment for fee-for-service installations.
- Difficulty in finding the perfect business model to implement SHS in rural communities

STRATEGIES

- Continue providing incentives through the energy levy
- Provide focused training for technicians in the maintenance of systems
- Encourage local assembling/ manufacturers to supply solar systems and components

 Remove import duty and taxes on raw materials for the production of RE systems.

• Limited access to long term finance.

CHALLENGES

- Inadequate reserve margin limits integration of larger utility scale solar plant
- Land requirement is significant and could compete with other land use options

STRATEGIES

- Mobilize funds domestically to finance major RE projects;
- Provide government on lending facilities to RE investments;
- Institutionalize competitive procurement to achieve price reduced tariff.
- Upgrade the National Interconnected Transmission System.

GHANA

PROBLEM

SOLUTION

FINANCE

COMMUNITY

APPENDIX

21

Implementation of PV solar panels and solar water pumps in health sectors.

Reasons for low standards of health sector in Ghana.

•There is a lack of easily accessible and reliable data on the availability of energy in healthcare facilities.

• Decentralized energy sources provide critical, yet insufficient, energy services to surveyed health facilities not currently connected to the grid.

•Almost 85% of the CHPS compounds surveyed were not connected to the grid and of these, 70% did not have an acceptable electricity supply.

•The accessibility, quality and reliability of energy-dependent health services varies from service to service and is generally inadequate for maternal and child health service provision.

Methods	to	improved	health
facilities.			

•Installation of computers in clinics for efficient storage and transportation of every kind of data.

•Installation of independent solar power panels to overcome the problems of electricity outage.

• Installation of refrigerators working on solar energy for preservation of CHPS compounds and other items requiring a particular temperature storage.

•Installation of solar water pumps to improve the water outage problems.

GHANA

PROBLEM

SOLUTION

FINANCE

COMMUNITY

Community /	Village Centres
-------------	-----------------

Family Annual Electricity Nee	eds (kWh)
Family Annual Electricity Nee	eds 5,500
Daily total	15.1 kwh/day
Solar panel output	9.35 kwh/day
2 Kwh *2	<u>Unit Cost</u> 2000 USD
Shipping & installati	on 500 USD
+ _f - Power storage Batte	eries 1500 USD
Cost per Community/village	4000 USD
Est. # of Villages	20,000
Total cost Community/villag	e 80 Million USD

Family Homes				
Family	Annual Electricity Needs	(kWh)		
Total		1,350		
Daily	total	3.7 kwh/day		
Solar	panel output	4.675 kwh/day		
		Unit Cost		
ШŘ.	1 Kwh	500 USD		
	Shipping & installation	200 USD		

Cost p	er household	1000 USD
+/-	Power storage Batteries	300 USD
	Shipping & installation	200 USD

Total cost of the Project for 80% Households of the above mentioned regions

555.74 Million USD

*This Plan will bring clean and green electricity for about 555,736 family. Sources: United Nations, Alibaba.com, EnergyUseCalculator

GHANA

PROBLEM SOLUTION

COMMUNITY

	Phase 1					Phase 2								Phase 3																	
Year	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052
Task force formation																															
Purchase panels for community centers																															
Training & awearness programs																															
Install community solar power plants																															
Data Entry in Repository																															
Immunization through village centers																															
Outreach to rural households to install OGS																															
Starting of offgrid solar installations in households																															
Government to pay 50% subsidy																															
Accelerated household outreach																															
Complete shift to private sector																															
Distribute electric cooking stoves																															
Develop healthy renewables private sector																															

Sources: AfDB, Prior Estimates

GHANA

PROBLEM

SOLUTION

FINANCE

COMMUNITY

Targets regions of improvement through electrification:

- Lighting
- Water supply
- Information and communication technology (ICT)
- Sterilization
- Refrigeration

Benefits through solar electrification:

- Average increase of about **25%** in electricity access time.
- The storage time of any medicine **increases by 50%.**
- Solar water pumps reduce both time and labour required for water access through hand pumps and tube wells.
- Solar water heater will improve the sector in proper sterilization techniques.
- Information and communication technology advancements with no power outage will help in proper handling and monitoring of critical data.

Facilities health centers will receive under the scheme:

- Installed independent 2kw solar panel with 573 Amp battery storage.
- Installed solar water pumps (Lorentz PS2-100) to overcome water outage.
- Installed solar water heaters.
- Installed solar water purifiers.

Economic Perspective:

Scheme	Cost (in \$ Million) for 1704 Health centers				
Solar panel installation	23.85				
Operation, Maintenance and	11.5				
installation for 25 years life span	11.5				
Installing a Lorentz PS2-100 solar photovoltaic water pump	11.928				
Solar water heater installation	2.7				
Solar water purifier installation	6.1				
Total	56.08				

Sources: United Nations Foundation, Ghana MoE

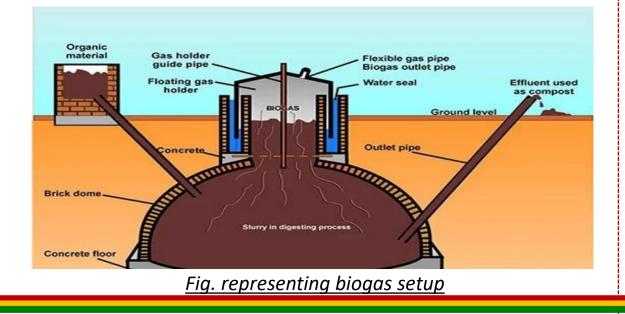
GHANA

PROBLEM

SOLUTION

FINANCE

24



WHY BIOGAS?

Why Biogas?

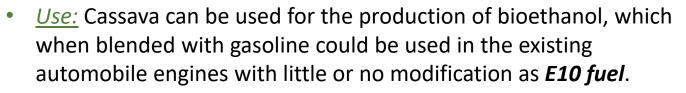
- Inefficient and poor storage facilities leading to massive wastage of <u>cassava</u> production (40-50% of entire production).
- Environmental concerns of mass-scale deforestation and loss of forest cover due to procurement of wood for cooking fuel.
- Lack of basic sanitation and hygiene facilities.

Sources of bio-waste: Human faeces, cocoa husks, kitchen waste.

Ghanian population distribution based on income

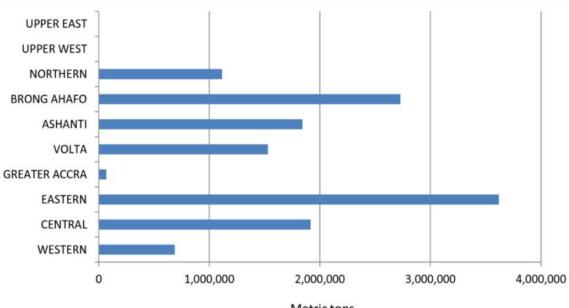
Income Class	Income Range (in \$)	Population %	Total Population
Poor	<2	22.8%	7,425,569.89
Low Income	2-10	71.0%	23,123,485.19
Middle Income	10-20	4.7%	1,530,709.58
Upper Middle Income	20-50	1.4%	455,956.05
Upper Income	>50	0.1%	32,568.29
То	tal:	100%	32,568,289
	Sc	ources: Pew Research	Centre, statsghana

GHANA


PROBLEM

SOLUTION

FINANCE


COMMUNITY

- <u>Effect:</u> 30% of waste generated during cassava production could offset 9.6% of gasoline import.
- <u>Economic Perspective</u>: The reduction in import due to offset of gasoline using 10% of ethanol mix, could generate an additional savings of 71.09 Million USD as of 2022.
- <u>Further expansion</u>: The savings generated shall go in building up transportation pipeline, to transport ethanol from the biofuel plant to the *Tema Oil refinery in greater Accra*.

Graph representing region-wise cassava production

:Fig. Cassava

26

Sources: University of Navarra, Kwame et al. 2012

GHANA

PROBLEM

SOLUTION

FINANCE

COMMUNITY

APPENDIX

*

Economic Feasibility:

 Biogas project is implemented for the income brackets of poor, low and middle income class.

Expenditure	Amount (In million USD)
Investment Cost	200.5
Annual Maintenance Cost	16.04
Total Maintenance Cost (For 30 yrs.)	352.8
Total Cost	553.38

<u>Benefits</u>: The **net recovery** over a span of 30 years amounts to **USD 814.75 million** from the charges procured from the population.

Transition into Reality: The biogas project is planned to launch through **PPP (Public Private Partnership),** with the loan amount on the part of the government being procured from international financial institutions **World Bank**.

Loan repayment: The recovered amount shall be used to **repay** the loan taken by the government (70 million USD), which amounts to **259 million USD** at the end of span of 30 years.

SAVINGS PER HOUSEHOLD PER DAY	INCOME CLASS	NO. OF HOUSEHOLDS	SAVINGS						
0.28	Poor	1,650,126.64	5,059,288,286.42						
0.28	Low Income	5,138,552.26	15,754,801,242.79						
0.252	Middle Income	425,197.11	1,173,288,895.37						
	Total	7,349,577.22	21,987,378,424.57						
	Sources: Prospect, Safege								

GHANA

INDUSTRY, INNOVATION AND INFRASTRUCTURE **Build resilient**

infrastructure, promote

industrialization and

foster innovation

inclusive and sustainable

SOLUTION

FINANCE

BIO-GAS

INCOME CLASS	NO. OF HOUSEHOLDS	YEARS TO PAY IN	CHARGES PER DAY PER HOUSEHOLD
Poor	1,650,126.64	100% Subsidy	0
Low Income	5,138,552.26	2045-2052~ 07	0.05
Middle Income	425,197.11	2040-2052~ 12	0.085
Upper Middle Income	126,654.46	NA	0
Upper Income	9,046.75	NA	0
Total	7,349,577.22		

- **Poor income class** is exempted i.e. **100% subsidy** is being provided for this class by the government for 30 years.
- Low and middle income classes are charged at the rate of 0.05 USD and 0.085 USD per day per household respectively.
- The charges are a fraction of their current spend on firewood and charcoal. (17.85% and 33.7% respectively).

PROBLEM

BIO-FUEL

Background: Ghana imports **97.5%** of its gasoline consumption which costs **710.9** *million dollars annually*.

<u>Plan of Action</u>: 18 total bioethanol plants in 6 different regions in Ghana, running on cassava production waste.

- 175.77 million dollars of investment and 197.75 million USD of maintenance.
- Offsetting 10% of gasoline import with ethanol results in an annual savings of 71.09 million USD.
- Returns accounted over 30 years amounts to 1776.5 million USD.
- Returns curtail down to 1.5 billion USD after repaying the loan received for installation for a 30 year period from the Africa Development Bank.
- The recovery amount shall be used in setting up <u>pipeline</u> <u>distribution network for transmission to Tema Oil Refinery in</u> <u>Greater Accra.</u>
- Pipeline are setup considering the rate of <u>1Million USD/mile</u>, with 30% additional offset.

FINANCE

28

Fiscal Incentives:

- Import-duty exemptions on products used to produce renewable electricity.
- VAT and import-duty exemptions for on-site equipment required.

According to our suggested plan, Return-on-Investment(*ROI*) for Bio-gas Project: 47% and Off-grid Solar Project: 22.30% which is higher than standard ROI demanded by private parties. Hence, Inviting private parties for investment will be ideal.

COMPARISON OF PPP WITH PUBLIC-UNDERTAKING PROJECTS

 United Kingdom National Audit Office(UKNAO) reported that, "PPP(Public Private Relationship) underwent 24% cost overrun as compared with 73% cost overrun by companies from public sector.

Strengthen the means of implementation and revitalize the global partnership for sustainable development

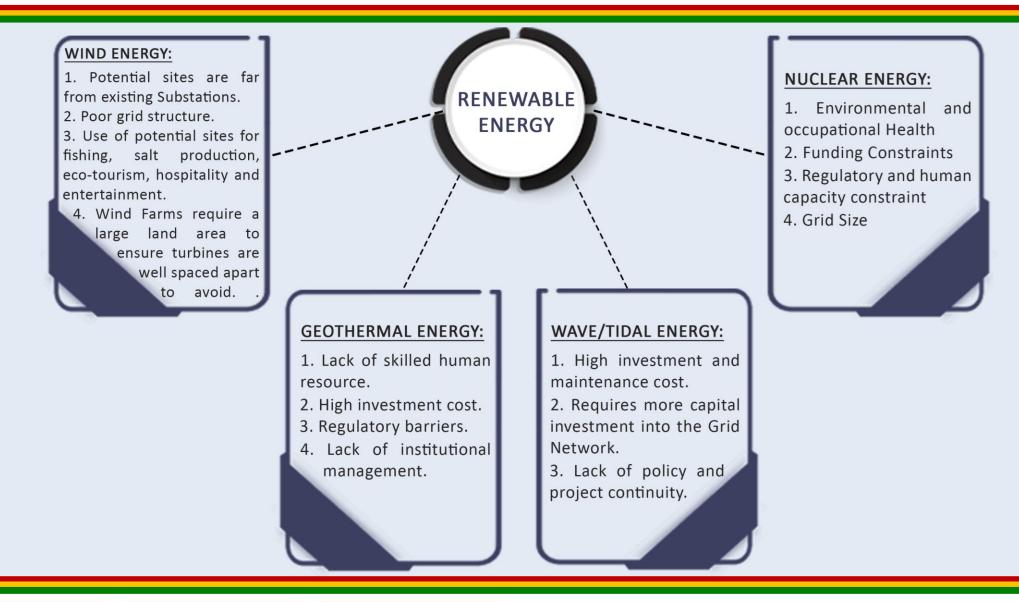
Sources: World Bank, APMG International

GHANA

PROBLEM

SOLUTION

FINANCE


COMMUNITY

APPENDIX

29

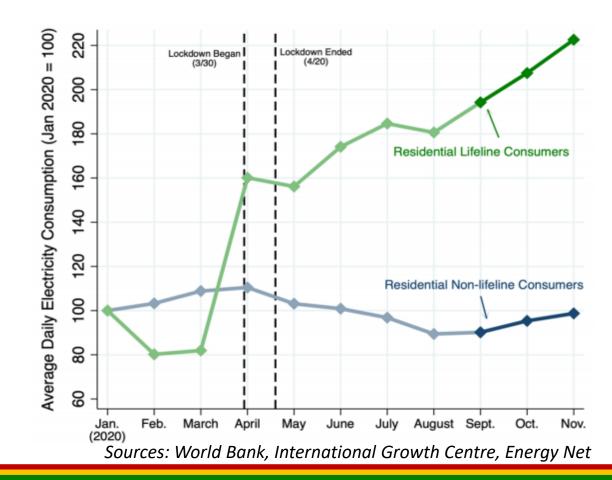
*

CHALLENGES WITH DIFERENT RENEWABLES

PROBLEM

SOLUTION

FINANCE


COMMUNITY

- For northern Ghana, average electricity consumption increased by 9% between March and June 2020 when the partial lockdown was imposed.
- Residential consumption increased by 13% from March to June 2020 though it was forecasted to have grown by only 5.3% during the same period.
- In the case of industry, there was no significant change in consumption.
- Generally, electricity consumption between March and June 2020, increased by 5.3% in southern Ghana.
- In the case of industry, Special Load Tariff-Low Voltage (SLT-LV) and SLT-HV customers' consumption reduced significantly by 1.9% and 17.2% respectively over the period March to June 2020.

Figure 4: Average daily electricity consumption by residential lifeline and non-lifeline consumers in Ghana, Jan-Nov 2020

GHANA

PROBLEM

SOLUTION

FINANCE

COMMUNITY

FINANCE

GHANA

PROBLEM

OVERALL COST CALCULATION

33

APPENDIX

COMMUNITY

Solution	Projects	Target Population	Total Installation cost (\$ million)	Total Maintenance cost for 30 years (in \$ million)	Total Estimated Cost(in \$ million) for 30 years	Return (in \$ million) for 30 years	ROI in %	Additional cost in Million USD	Cost to government (Subsidy, investment etc.) in \$ million
	Household Solar	Households of Northern, Upper West, Upper East (3.3 Million)	\$500.74	\$55.00	\$555.74	\$656.71	18%		\$165.00
Off- Grid	Community Solar	Rural villages of upper east, upper west, Brong Ahafo, northern (2million)	\$78.00	\$2.00	\$80.00	NA	NA	\$5.00	\$80.00
	Health Facilities	All Health Centers (1704 Health facility)	\$38.90	\$19.18	\$58.08	NA	NA		\$58.08
On- Grid	Grid Extension	People living Near grid	\$16.67	\$1.03	\$17.70	NA	NA	NA	\$17.70
	Bio- fuel	Population using transport facility	\$175.77	\$197.75	\$373.52	\$1,776.50	NA	\$15.00	\$197.75
Biogas Plants	Bio gas for clean cooking bracket Population in poor, lo income bracket 93.8% Population		\$203.55	\$353.00	\$556.55	\$814.75	47%		\$353.00
		• •	IRE ESTIM	ATED COST O	F OUR PROPC	SED SOLUT	ON = <mark>89</mark>	1.53 MILL	ION USD

FINANCE

SOLUTION

ON-GRID EXTENSION

ON-GRID EXTENSION INVESTMENT							REVENUE GENERATED FROM ON-GRID EXTENSION								
Year	No. of communiti es	Total distribution line length		Cost of low voltage lines	Other costs	Total	Year	Cumulative population included	Electricity consumed per day per family	Total amount of revenue generated	Total revenue generated in until 2052				
2022	10	15600	702000	521664	60746	1284410	2022	4547	3.5	\$34,853	\$1,045,583				
2023	10	25794	1160730	608608	62919	1832257	2023	9872	3.5	\$75,669	\$2,194,398				
2024	10	28437	1279665	560560	62961	1903186	2024	14423	3.5	\$110,552	\$3,095,464				
2025	10	27642	1243890	570856	63294	1878040	2025	19042	3.5	\$145,957	\$3,940,837				
2026	10	39909	1795905	565136	63221	2424262	2026	23600	3.5	\$180,894	\$4,703,244				
2027	10	37754	1698930	539968	60486	2299384	2027	27661	3.5	\$212,022	\$5,300,539				
2028	10	44827	2017215	663520	69929	2750664	2028	32693	3.5	\$250,592	\$6,014,204				
2029	9	34869	1569105	1257256	87858	2914219	2029	42129	3.5	\$322,919	\$7,427,132				
Total	79	254832	11467440	5287568	531414	17286422				Total	\$33,721,401				

GHANA

PROBLEM

SOLUTION

FINANCE

COMMUNITY

34

Family Homes

Family Annual Electricity Needs	(kWh)
One fridge	400
Two fans 6 hrs/day 75 watt	300
Two CFL Lights 8 hrs/day	150
Other potential needs	500
Total	1,350
Daily total	3.7 kwh/day
Solar panel output	4.675 kwh/day
	<u>Unit cost</u>
1 Kwh	500 USD
Shipping & installation	200 USD
Power storage Batteries	300 USD
Cost per household	1000 USD
Total cost of the Project for80% Households	555.74 Million U

Community /Village Centres									
Family Annual Electricity Needs	(kWh)								
Area Fans x 5	2500								
Big CFL lights 8hrs/day	2000								
Other potential needs	1000								
Total	5500								
Daily total	15.1 kwh/day								
Solar panel output	9.35 kwh/day								
*	Unit cost								
2 Kwh *2	2000 USD								
Shipping & installation	500 USD								
Power storage Batteries	1500 USD								
Cost per Community/village	4000 USD								
Est. # of Villages	20,000								
Total cost Community/village	80 Million USD								

Sources: United Nations, Alibaba.com, USAID

GHANA

SOLUTION

FINANCE

_

	Investment & Maintenance costs										
Years	2022-2027	2027-2032	2032-2	037	2037-2042	2042-2047	2047-20	052	TOTAL		
On grid extention	12.4 Million USD	4.3 Million USD	0.2 Millio	n USD	0.2 Million USD	0.3 Million USD 0.3 Million		n USD	17.7 Million USD		
Community based solar	30 Million USD	50 million USD	0.8 Millio	n USD	1 Million USD	1.2 Million USD	2 Million	USD	85 Million USD		
Off grid solar	NA	55 Million USD	125 millio	n USD	125 Million USD	125 Million USD	125 Millio	n USD	555 Million USD		
Economics of Priv	lar		Potential p	Current investment in Ghana							
Charging rate per kwh of so	lar electricity use	d 0.035 per kv	wh			Beijing Xiao	cheng				
Total estimated demand in p	per dav	2570314 kwh per		Existing parties		Company		30 million USD			
	set day	day	day		isting parties	Blue Energy plc.		400 Million USD			
Total estimated revenue per	ryear	32.85 Millio	32.85 Million USD			Meinergy G	inergy Ghana		29 Million USD		
Total revenue generated in 3	20 years	656 71 Milli	CEC 71 Million USD			Mobisol (UNDER					
iotal levenue generateu in .	so years	050.71 101111	656.71 Million USD		w Interested	ENGIE)					
Benefit To investment Ratio	18%			ivate parties	JABO LLC			NA			
Calculated subsidy by gover				ivate parties	BIOLITE						
years		165 Million	020			ECOZOOM					

GHANA

PROBLEM

SOLUTION

FINANCE

POTENTIAL DONORS

Project	Lenders	Borrowed amount (in \$ million)	Interest Rate	Payback period	Payback amount (in \$ Million)
Bio-gas Plant	World Bank	70	5%	20 Years	175
Bio - Fuel Plant	Africa Development Bank	75	5%	20 Years	187.5

Other Potential Donors

- USAID
- CIDA
- The International Renewable Energy Agency (IRENA)
- United Nations Environments Programme (UNEP)
- Global Environment Facility (GEF)
- The French Development Agency
- The European Union
- Export-Import Bank of Korea
- Japanese International Cooperation Agency

Solar Panels		Pump				
Cost for 2kw Facility level Micro-grid (48V) along	\$14,000.00	Cost for ONE LORENTZ- PS2-100 solar photo voltaic	2000			
with 573Ah Battery storage		water pump	2000			
Total number of Health Facility	1704.00	Operation and Maintenance cost per year per				
Cost for installation of solar panels	\$23,856,000.00		200			
Maintenance cost per year per health facility	\$250.00	health facility				
Operation cost per year per health facility	\$125.00	· · · · · · · · · · · · · · · · · · ·	11.928 Million			
Cummulative operational and maintenance cost	11.5 Million USD	water pumps for all health facility	USD			

Solar heater & purifier										
Organisations	Government	Quasi - Government	TOTAL							
No. Of Health Facilities	1625	79	1704							
Cost Of Water Heater(USD)	1608.									
Total Cost of Water Heater(USD)	2613243.75	127043.85	2740287.6							
Cost Of Water Purifier(USD)	3600									
Total Cost Of Water Purifier(USD)	5850000	284400	6134400							
Total Amount(USD)	8463243.75	411443.85	\$8,874,687.60							

GHANA

PROBLEM

SOLUTION

FINANCE

COMMUNITY

APPENDIX

38

Current expenses of using firewood and charcoal as a cooking fuel

Income Class	Total Firewood Consumption (Kg per year)	Firewood Cost, Annually	Firewood Cost (per kg)	Firewood expense per day for one household	Income Class	Total Charcoal Consumption (Kg per year)	Total Charcoal Cost, Annually	Charcoal Cost (per kg)	Charcoal Expense per day for one household		
Poor	1,837,251,003				Poor	726,385,748					
Low Income	5,721,264,091			\$0.24	Low Income	2,261,990,706			\$0.036		
Middle Income	419,329,386	\$648,933,840	\$0.08	\$0.08		Middle Income	183,132,393	\$96,898,660	\$0.03		
Upper-middle Income	124,906,625					\$0.22	Upper-middle Income	54,550,074			\$0.035
High Income	8,921,901						High Income	3,896,433			
Total	8,111,673,009				Total	3,229,955,357					

GHANA

PROBLEM

SOLUTION

FINANCE

COMMUNITY

APPENDIX

39

	٢
ŕ	

						Maintenance Cost					
Savings per household per day	Income Class	Investment Cost	Annual Maintenance Cost	2022-2027 Installation	2027-2030	2030-2035	2035-2040	2040-2045	2045-2052	Total Maintenance Cost	Total Cost
0.28	Poor	\$46,409,812	\$3,712,785	\$46,409,812	\$0	\$18,563,925	\$18,563,925	\$18,563,925	\$25,989,495	\$81,681,269	\$128,091,081
0.28	Low Income	\$144,521,782	\$11,561,743	\$144,521,782	\$0	\$57,808,713	\$57,808,713	\$57,808,713	\$80,932,198	\$254,358,337	\$398,880,120
	Middle Income	\$9 <mark>,</mark> 566,935	\$765,355	\$9,566,935	\$0	\$3,826,774	\$3,826,774	\$3,826,774	\$5,357,484	\$16,837,805	\$26,404,740
0.252	Upper Middle Income	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	Upper Income	\$0	\$0	\$0	\$0	\$ 0	\$0	\$0	\$0	\$0	\$0
	Total:	\$200,498,529	\$16,039,882	\$200,498,529	\$0	\$80,199,412	\$80,199,412	\$80,199,412	\$112,279,176	\$352,877,411	\$553,375,940

	•										
Savings per household pe day	Income Class	No. of Households	Years to pay in	Charges per day per household	2022-2027 Charges	2027-2030	2030-2035	2035-2040	2040-2045	2045-2052	Returns
0.28	Poor	\$1,650,127	100% Subsidy	\$0.000	\$0	\$ 0	\$0	\$0	\$0	\$0	\$0
0.28	Low Income	\$5,138,552	2045-2052~ 07	\$0.050	\$0	\$ 0	\$0	\$0	\$0	\$656,450,052	\$656,450,052
	Middle Income	\$425,197	2040-2052~ 12	\$0.085	\$0	\$ 0	\$0	\$0	\$65,958,701	\$92,342,182	\$158,300,883
0.252	Upper Middle Income	\$126,654	NA	\$0.000	\$0	\$ 0	\$0	\$0	\$0	\$0	\$0
	Upper Income	\$9,047	NA	\$0.000	\$0	\$ 0	\$0	\$0	\$0	\$0	\$0
	Total:	\$7,349,577			\$0	\$0	\$0	\$0	\$65,958,701	\$748,792,233	\$814,750,934
							BIO GAS				
Savings fro shifting aw traditiona	/ay	Amount to be to the low and income brac	l middle		llation follow	ed by	Total nvestment Amount	Loan taken by govt	Interest rate	Pay back period	Principle+ Interest
liaultiona		income bra	ckets.	3 yea	rs of mainter	ance					

free operation

traditional cooking fuel

GHANA

SOLUTION

PROBLEM

FINANCE

\$200,498,529 \$70,000,000

COMMUNITY

5%

APPENDIX

20 Years

40

\$175,000,000

	BI	O-F	U	ΞL
--	----	-----	---	----

			_	
Gasoline Import in 2021	2227814570	litres		
Gasoline Consumption in 2021	2275496689	litres		
Density of gasoline	755	kg/cubic metre		
10% of gasoline or Ethanol Production	227549669	Litres		
Bio fuel Generation Factor 63 L per tonne of wa				
Required Cassava Waste in Tonnes	3605033	tonnes		
Total Cassava Production in 2021	21800000	tonnes		
Cassava Waste Generated	9810000	tonnes		
Net Waste to be collected	36	.75%		
Cost of Import /year	\$71	0.60 Million USD		
Import Bill Savings/year	\$7	1.06 Milliion USD		
Import Bill Savings~25 years	\$1,77	6.50 Million USD		
			-	

Loan Amount	7500000
Interest Rate	5.00%
Interest	\$112,500,000.00
Amount	\$187,500,000.00
Payback Period	20

Import savings by offsetting 10% of gasoline import with indigenously produced ethanol.

Year	2022-2027	2027-2052		
Investment Cost	\$175,774,570	\$0.00		
Annual Maintenance Cost	\$7,909,856			
Maintenance Cost	\$0.00	\$197,746,391		

GHANA

PROBLEM

SOLUTION

FINANCE

COMMUNITY

BIO-FUEL

Volume of Ethanol in Litres	Investment Cost	Awareness+Storag e+Miscelaaneous	Total Cost	No. of Plants Required		
\$222,781,457	\$175,774,570	\$25,000,000	\$200,774,570	18		10% of entire gasoline import
Regions	Cassava Production (tonnes)	Waste Generated (tonnes)	Total Ethanol Production (Litres)	Waste Required(tonnes)	% of Total generated Waste	to be offset with bioethanol
Eastern	3700000	1,665,000	63,371,356	1,003,982	60%	Ethanol production in accordance
Brong Ahafo	2800000	1,260,000	50,697,085	803,186	<mark>64%</mark>	with ethanol generation factor of
Central	1900000	855,000	38,022,814	602,389	70%	_
Ashanti	1800000	810,000	38,022,814	602,389	74%	63.12 L per tonne of cassava waste.
Volta	1500000	675,000	25,348,542	401,593	<mark>59%</mark>	1
Western	750000	337,500	12,674,271	200,796	59%	
	Eastern		5			
Perione of	Brong Ahafo		4	Highest ca	assava producin	g Ghanian regions.
Regions of	Central		3			
Setting up a	Ashanti	5 years for set-up	3	Number of	f plants based u	pop production

Number of plants based upon production rate and nearness to the oil refinery.

GHANA

Volta

Western

Total

Plant

PROBLEM

SOLUTION

2

1

18

COMMUNITY

COMMUNITY BENEFITS

COMMUNITY BENEFITS

Solar Installation	 Household's work efficiency will be enhanced by 45-61% using solar PV panels. Each end user will receive the subsidy of 50% of its solar electricity from the government for the first 10 years.
	 Community centres will provide free solar power in areas which are deprived of the electricity till now.
Bio-fuel	 Biogas helps solve the sanitation problem in Ghana. Remains after biogas production could be used as an organic fertilizer in food production. On a societal level illnesses like cholera, dysentery and other gastrointestinal diseases related to unhygienic eitertions will ensure less often.
	situations will occur less often.
Bio-gas	 E10 fuel blending would save the foreign reserves, which would otherwise had been used in purchase of gasoline. Bioethanol generation serves a passive income for cassava producers, for dispatching their produce waste to the nearby biofuel manufacturing plant.
	Creation of new career options and employment opportunities for the youth.
Transmission lines expansion	 Electricity will provide internet and help rural community to diversify their skillsets. Farmers will be enabled to use machinery and increase the productivity.
	Improvement in the quality of healthcare provided. Sources: IRENA, WHO, UNDP
GHANA	PROBLEM SOLUTION FINANCE COMMUNITY APPENDIX 44

PROBLEM

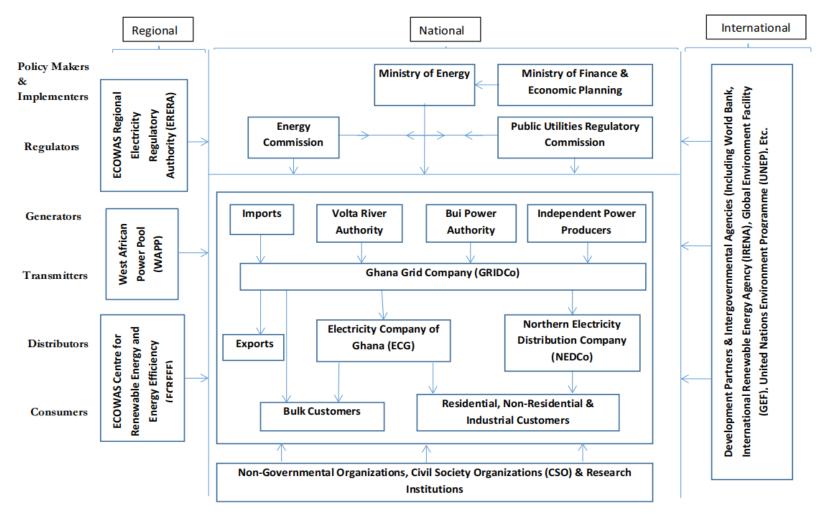
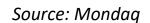



Fig. Stakeholders in Ghana's power sector

SOLUTION

COMMUNITY

Solar Energy Companies in Ghana

Add Your Company to the Directory >>

Total Records: 24

ADDOSOLAR

Jungle Road, A&C Square, Accra, Ghana Telephone Number: 054 550 0706 Business: Retailer Products: Solar Energy Web Site: <u>http://www.addosolar.net</u>

We re-sell solar lanterns, solar chargers and solar home systems. The goal is to provide affordable portable sola solutions for power outages.

2.

Cabah

1

Ea Accra, Accra 233, Ghana Telephone Number: 002365844 Facsimile Number: 023568415 Business: Manufacturers Services: Project Development Products: Solar Energy Web Site: http://www.cabah.com

3. Eco-solar & Construction Ltd

p.o.box aj,14,Accra North,Ghana,West Africa, Alajo 233, Ghana **Telephone Number:** +233248482392 **Services:** Consulting, Design, Installation **Products:** Solar Energy

Web Site: <u>http://www.ecosolarconstruction.com</u>

4. Milky-Way Energy Ltd

No. 28 Old Ashongman, Accra, Ghana Telephone Number: +233-269630174, +233-269630175 Facsimile Number: 0542565513 Services: Engineering, Installation Products: Alternative Power Systems, Batteries and Accessories, Solar Energy Web Site: http://www.milkywayenergy.com

our services installation of solar pv systems for customized applications solar water heating systems solar water pumps professional house wiring training and consultancy services.

5. Mundeco Ghana Limited

12 Shitor Close, Accra, Ghana Telephone Number: 0243 555 766 Business: Retailer Services: Installation, Maintenance & Repairs Products: Solar Energy, solar accessories Web Site: http://www.mundeco.com

mundeco Ghana Limited is a full-service solar energy provider for home owners, businesses and communities. Th company is a subsidiary of mundeco GmbH, based in Dortmund - Germany.

6. KUPATECH GHANA LIMITED

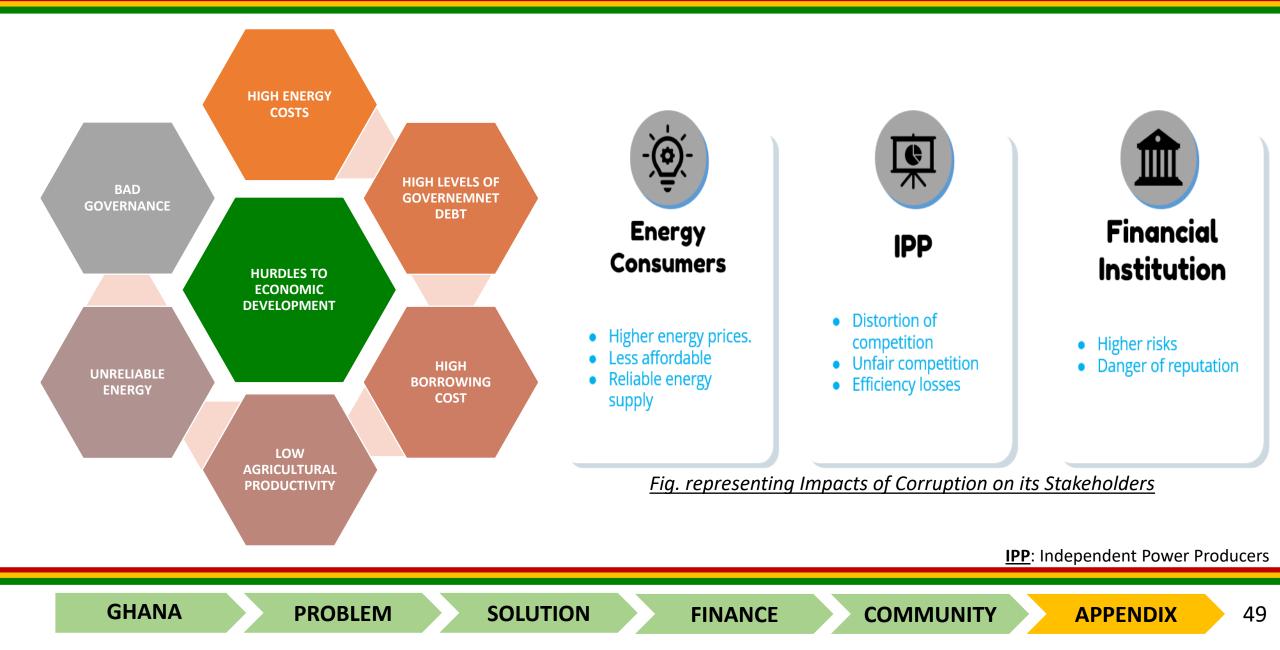
off the Odorkor-Mallam High Way, ACCRA 233, Ghana Telephone Number: +233(0)244514620 Business: Importers, Retailer Services: Installation Products: Alternative Power Systems, Batteries and Accessories, Hydro Energy, Solar Energy, Wind Energy Web Site: http://www.kupatech.com

GHANA

PROBLEM

SOLUTION

FINANCE


COMMUNITY

APPENDIX

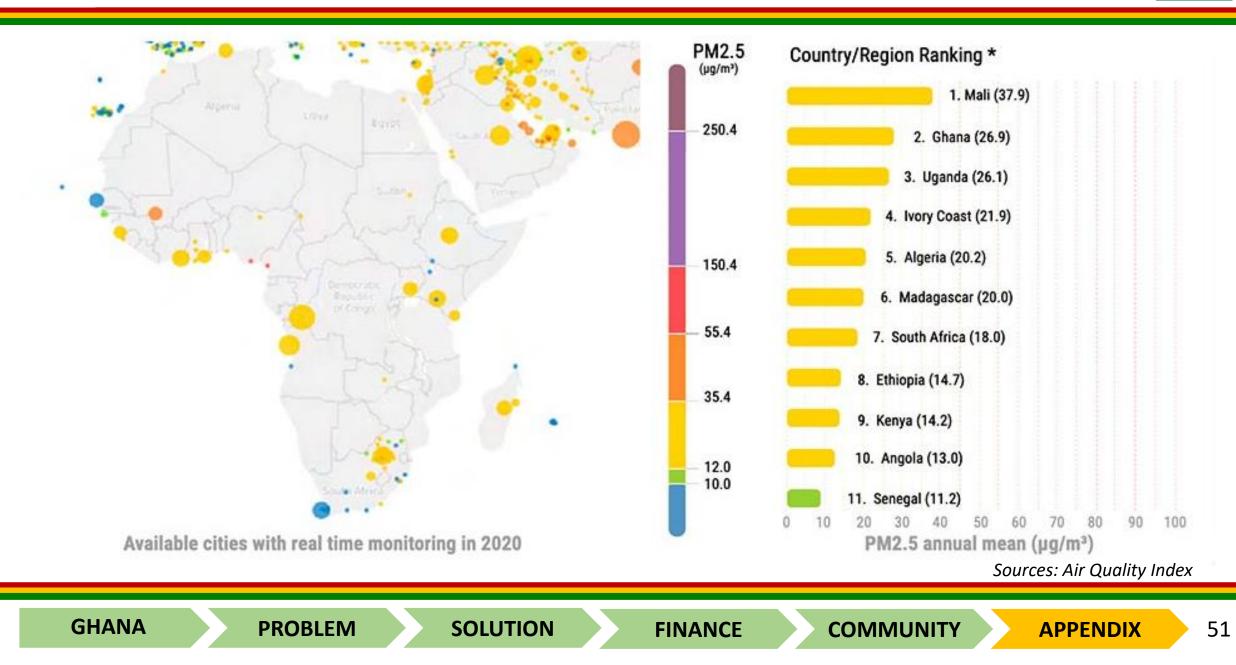
48

Name	Owner	Phase Out (Year)	Installed Capacity(MW)	Reliable Capacity (MW)	Fuel1	Fuel2
Akosombo	VRA	2065	1020	900	Hydro	
Kpong	VRA	2042	160	140	Hydro	
BUI	SPA	2065	260	120	Hydro	
Aboadze Tl	VRA	2011	330	300	NG	LCO
Aboadze T2 (TICo)	IPP	2013	220	220	NG	LCO
Terna TT1PP	VRA	2014	126	110	NG	LCO
TEMA TT2PP	IPP	2035	49.5	45	NG	Diesel
OSONOR (CENIT)	IPP	2037	126	120	NG	LCO
Tokaradi 3	VRA	2038	132	120	NG	LCO
Terna Mine Reserve Plant	IPP	2032	80	40	NG	Diesel
Sunon Asogli	IPP	2035	200	180	NG	

LCO: Light Cycle Oil <u>NG:</u> Natural Gas

Sources: International Energy Agency

GHANA


PROBLEM

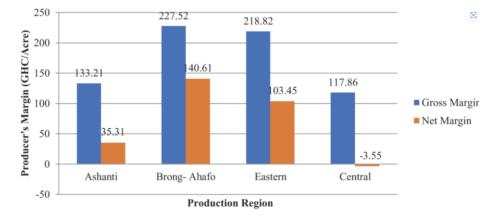
SOLUTION

FINANCE

COMPARISON OF AIR POLLUTION OF MAJOR CITIES OF SOUTH AFRICA

GHANA

PROBLEM


FINANCE

COMMUNITY

SOLUTION

Appendix 1. Profitability of cassava production across Regions for the 2012 cropping season.

Source(s): Aidoo et al., (2016)

A. Variable costs (All costs and revenues in GHC)	Ashanti	Brong-Ahafo	Eastern	Central	Greater Accra	Volta	Western	Pooled sample
Land clearing	207.29	300.68	185.57	158.42	224.16	179.84	108.13	200.16
Land preparation	151.60	274.86	104.74	108.26	183.87	127.73	121.00	140.80
Planting materials	156.11	224.05	182.80	297.76	194.95	148.24	72.29	185.10
Coppicing planting materials	47.32	66.69	69.57	154.45	48.73	41.65	51.65	65.40
Carting planting materials (T&T)	47.18	91.26	51.57	51.62	69.28	31.67	23.07	49.39
Planting cassava sticks	157.53	155.89	145.28	94.40	210.11	103.26	65.95	135.12
First weeding	197.63	255.83	174.41	98.68	214.11	152.07	44.40	173.82
Second weeding	171.13	209.59	171.74	91.14	215.42	151.42	38.89	160.85
Herbicides (chemical weeding)	55.27	81.29	81.99	64.48	61.08	57.14	71.89	69.14
Herbicides application	50.55	62.88	45.77	57.38	37.42	38.45	26.75	47.64
Insecticides	29.25	24.20	43.00	48.46	49.70	31.73	28.67	38.87
Insecticides application	23.75	39.20	31.25	50.14	38.33	32.33	27.00	36.83
Total cost of knapsack rent	8.11	7.24	21.20	39.04	14.53	13.37	82.78	21.29
Harvesting	219.01	339.90	263.46	104.06	162.16	113.23	55.40	204.83
Gathering/heaping harvested cassava	70.35	99.07	68.16	50.76	46.36	39.54	28.22	66.51
Carting harvested produce to market/home (T&T)	138.31	371.72	133.42	71.55	69.00	81.97	39.44	146.92
Other variable costs	40.93	45.00	32.10	22.00	50.00	47.92	0.00	36.53
Total VC for whole farm	1,771.33	2,649.35	1,806.01	1,562.58	1,889.19	1,391.57	885.53	1,779.20
Acres of cassava cultivated	2.15	3.90	2.66	3.42	2.97	2.39	1.31	2.74
Total Variable Costs per acre	823.72	679.53	679.57	457.16	635.30	583.03	676.29	649.39
B. Revenue								
Yield/acre (120kg bags)	23.72	33.08	24.43	12.47	23.26	17.1	14.68	20.76
Unit price (GHC)	40.3429	27.42	36.774	46.1121	50.2632	44.7885	64.2381	42.2604
Gross revenue (B)	956.93	907.05	898.39	575.02	1,169.12	765.88	943.02	877.33
C. Gross margin (B-A)	133.21	227.52	218.82	117.86	533.82	182.86	266.73	227.93
D. Fixed cost								
Land rental	87.99	77.58	105.57	111.63	101.94	74.81	140.40	97.32
Cutlass/hoe	9.9167	9.3354	9.8079	9.7768	10.2105	11.2636	8.8537	9.9623
Total fixed cost (D)	97.91	86.92	115.38	121.41	112.15	86.07	149.25	107.28
E. Net margin (C-D)	35.31	140.61	103.45	-3.55	421.67	96.78	117.48	120.65
F. Total cost (A+D)	921.63	766.44	794.94	578.57	747.45	669.10	825.54	756.67
G. BCR (B/F)	1.04	1.18	1.13	0.99	1.56	1.15	1.14	1.16
H. Returns on investment (E/D)	36.06%	161.78%	89.66%	-2.93%	375.99%	112.44%	78.71%	112.46%

Source: Computed from field data, 2014.

GHANA

PROBLEM

SOLUTION

FINANCE

COMMUNITY

1. <u>Ghana</u>

- 2. Timeline of Energy Sector
- 3. What Energy Poverty means to Ghana?
- 4. Story of 'DUMSOR'.
- 5. Impacts of major Power Cuts, Electricity Affordability and Losses.
- 6. Engagement of fossil fuels.
- 7. Impact of Power cuts and transmission losses.
- 8. Hydropower assets of Ghana.
- 9. Why not Wood and Charcoal?
- 10. Impact of Corruption and Climate change.
- 11. Impact of underdeveloped health facilities.
- 12. Off-grid V/S On-grid.
- 13. The On-grid extension plan.
- 14. Solution of overproduced electricity.
- 15. Relationship across boundaries.
- 16. The Off-grid solar plan.
- 17. National Energy Data repository.
- 18. Improving Health sector through off grid solar plans.
- 19. The Biogas plan and economics.
- 20. The dynamics of Cassava.
- 21. Biofuel The game changer.
- 22. Government policies and incentives.
- 23. The cultural and community impacts of various plans.
- 24. Challenges with different renewables.
- 25. Conclusion.
- 26. The Finance section.
- 27. Appendix.