

The University of Texas at Austin Hildebrand Department of Petroleum and Geosystems Engineering Cockrell School of Engineering

Switch Energy Case Competition

TEAM – URJA VRIDDHI

भारतीय प्रौद्योगिकी संस्थान (भारतीय खनि विद्यापीठ), धनबाद धनबाद -८२६००४, झारखण्ड , भारत INDIAN INSTITUTE OF TECHNOLOGY (INDIAN SCHOOL OF MINES), DHANBAD DHANBAD - 826004, JHARKHAND, INDIA

Mentor- Andreas Matzakos

Ajay Kumar

Ranjan Kumar

Bhautik Agrawal

Raj Kumar

Case Study Outline

*

Overview of Ghana

- A. Demographics
- B. Trends of Ghanaian Power sector
- C. Present Energy Mix
- D. Energy Distribution

01

Challenges to Current Energy Mix

- A. Understanding Dumsor
- B. Overdependence on Hydropower
- C. Unstable and weak Economy

02

- D. Unskilled Local people
- E. Impact of Covid-19

Solution: Ghana Energy Revolution 2050

A. Energy opportunities

03

- B. Economic analysis
- C. Impact on People of Ghana
- D. Conclusion

The Impetus to industrialization was embarked leading to the building of Dams, Roads and Factories for strengthening the power sector.

3521.23 GWh of electricity generation capacity was added to meet the growing energy demands.

Caused due to low rainfall and decreased inflow to the Volta lake

Trends in Electricity Demand, Supply and Generation Potential from 1996-1990

Source: Data from VRA Annual Report

Trends in Electricity Supply and Consumption from 1996-1990

Source: Energy Commission of Ghana, 2016a, 2017; VRA 2015

2. Trends of Ghanaian Power Sector

3.Present Energy Mix

4. Energy Distribution

Dependency on biomass fuels leading to huge air pollution. Expensive power and high poverty levels leading to energy insufficiency

Scarcity of financial capitals for the alternative cleaner & economically feasible energy resources such as wind and solar

Lack of technical skills and knowledge in the domestic population to develop and utilize these resources

1. Understanding Dumsor

on Hydropower

2. Overdependence

3. Unstable and weak economy 4. Unskilled local people

5.Impact of Covid-19

Dumsor: Root Cause Analysis

Frequent nationwide power outages and load shedding are indicative of the supply-demand mismatch

The overloaded transformer sub-stations, transmission and distribution losses, and transmission bottlenecks are contributory factors to the frequent power outages

At the beginning of 2015, the Dumsor schedule went from 24 hours with light and 12 without to 12 hours with light and 24 without.

Transmission losses account for 3.9 %. While the distribution and commercial losses by the Electricity Company of Ghana account for as much as 16.2 % of the gross electricity supply

Dumsor can also be accounted taking into the consideration Ghanaian generating capacity which the was 400-600 megawatts, less than what Ghana needed in 2015

Source: Jamie Senoy Lighting Africa

Source: codeforghana.org

1. Understanding Dumsor

2. Overdependence on Hydropower

3.Unstable and weak economy 4. Unskilled local people

5.Impact of Covid-19

History of origin of Hydropower

Developed under the "Hydro-Dam Scheme" initiated under Colonial regime that primarily enhanced the reliable power supply to the countries Aluminium industries.

Lack of Energy Diversification

Akosombo powered Ghana's most energy demand and this continued overdependence on one source is an insecurity to the country. Continued energy demand led to construction of Bui and Kpong dam which again was a hydropower source.

Uneven Energy Distribution

Energy sources are not equally distributed across the country and a major part is lost into transmission to northern part

Hydropower

Dominance

&

Shortfall

Challenges to current Energy Mix

*

2. Overdependence on Hydropower 3.Unstable and weak economy

4. Unskilled local people

5.Impact of Covid-19

Incapability of Hydropower to supply electricity due to poor rainfall. At the end of 2011, Ghana's electricity generation mix stood at 67% hydro sources against 33% thermal.

Customers were provided with an average of 12.5 hours of electricity every three days. Ghana experienced about 159 days of blackout in 2014 alone.

Ghana lost about 1.8% of its gross domestic product due to the 2007-2008 power crisis.

Total grid electricity generation in 2018 was 14,069 GWh of which 4,991 GWh (39.2 %) was from hydropower

There is non-uniform wealth distribution among the Ghanaians which is not healthy for the economy.

The share of Agriculture has been decreasing overtime

Source: Government of Ghana National Survey of Ghana

Source: Encyclopedia Britannica, inc, trading economics.com

1. Understanding Dumsor 2. Overdependence on Hydropower 3.Unstable and weak economy

4. Unskilled local people

5.Impact of Covid-19

Gender based Labor force distribution						In	dustry v	vise Labo	or force di	stributio	n					
Category	% of labo	or force	CI 55 5	CI 55 6	GI 55 7	Population	Population		Industry	GLSS1 (1993)	GLSS4	Census	GLSS5 (2004/5)	Census	GLSS6	GLSS7
	GL35 3	GL35 4	GL35 5	GL35 0	GL357	census	census		Agriculture,	(1990)	(1990)	(2000)	(2004/3)	(2010)	(2013)	(2017)
	1992	1999	2006	2013	2017	2000	2010		fishing, and	64.6	55.8	51.2	55.7	40.1	46.4	38.6
Total unemployment	2.3	2.7	3.1	5.2	5.1	10.4	5.8		forestry							
Male unemployment	2.2	3.4	3.2	4.8	4.5	10.1	5.4		Manufacturing	8.0	11.0	11.2	11	12.7	9.2	11.6
Female unemployment	2.4	2.2	3.0	5.5	5.7	10.7	6.3		Construction	1.4	1.7	3.2	1.9	2.9	3.3	4.3
Urban unemployment	6.7	5.8	6.1	6.5	7.8	12.8	8.0		Mining,							
Rural unemployment	0.5	1.2	1.3	3.9	3.5	8.6	3.5		electricity, water	0.9	1.0	1.8	1.0	2.3	1.7	1.6
Youth unemployment (15-	5.2	5.0	6.6	10.9	7.1	16.7	12.9		and gas							
24)									Services	25.1	30.6	32.7	30.5	42.1	39.5	44.0
Adult unemployment (25+)	1.4	2.1	1.9	3.4	4.1	8.6	4.0		Total	100.0	100.0	100.0	100	100.0	100	100
Source: Calculations from Source: GL	SS 3, 4, 5, 6 8	7 and Popula	ation & Housin	g Census 20	00 & 2010.			÷.	Source: Calculations from I	lousehold and	Population Cens	sus data by the	Ghana Statistical	Service		

Government Policies to curb Unemployment

O Youth Employment Agency (YEA)

O National Youth Employment Programme (NYEP)

- O National Employment Policy (NEP)
- National Employment Coordinating Council (NECC)

1. Understanding Dumsor 2. Overdependence on Hydropower

Gender based Labor force distribution

Demographic group	2012/13	2016/17			
Gender					
Male	48.9	37.9			
Female	51.0	62.1			
Age					
15-24	36.0	40.7			
25-34	29.8	30.0			
35-65	34.1	29.3			
Education					
Less than secondary	76.8	62.1			
Secondary	17.1	28.6			
Post-secondary	6.1	9.3			
ources: GLSS 6 and 7.					

International Degree-Seeking Students in Ghana

Source: UNESCO Institutes for statistic

1. Energy Opportunities

2. Economic Analysis

Hydropower

01

02

03

04

Akosombo, Kpong and Bui dams power 47.4% of Ghana's Energy requirements.

Solar Power

With increasing energy demands, the share of solar have to grow from its current share of 6.26%

Thermal

Thermals power nearly 47.50 % of energy demands and its share in future energy mix should be decided based on sustainability and demands.

Geothermal

The exploration in the Geothermal domain can be carried out to exploit its potential if any

1. Energy Opportunities

2. Economic Analysis

3.Impact on people of Ghana

4. Conclusion

Prospective locations for Hydropower projects			Current Hyd	ropower Stat	tions in Gha	ina		
Koulbi (68MW) Ntereso (64MW) We GHANA TOGO	Hydroelectric station	Community	Coordinates	Туре	Capacity (MW)	Year completed	Name of reservoir	River
Lanka (S5MW) Bui (400MW) VORY COAST Asuoso (25MW) Kintampo Kintamp	Akosombo Hydroelectric Power Station	Ajena	6.299722°N 0.059444°E	Reservoir	1,038	1965	Lake Volta	River Volta
Sodukrom (17MW) Kojokrom (30MW) Jumoro (20MW) Ench Duskin Kotostas Ketas	Bui Hydroelectric Power Station	Bui Gorge	8.278602°N 2.236935°W	Reservoir	400	2013		Black Volta River
Janoso (56MW) Janoso (56MW) Latinota Tanoso (56MW) Latinota Monetos Ads Existing Abatumesu (50MW) Janoso (50MW) Latinota Setoral Cape Coasi Cope Coasi Code POTENTIAL Abatumesu (50MW) Axim Latinota Setoral Cape Coasi Code POTENTIAL Attantic OCEAN Hemang (90MW) Source: W.Jsooba & L.Sowah. 2010 1000 m 200 m 0 100 km Source: W.Jsooba & L.Sowah. 2010 100 m	Kpong Hydroelectric Power Station	Akuse	6.119989°N 0.125000°E	Reservoir	160	1982		River Volta

2. Economic Analysis

4. Conclusion

THERMAL ENERGY

- Up to 89% of installed thermal plants depend on natural gas as the primary fuel source.
- The sources of supply include the associated gas fields (Jubilee and TEN) and the non-associated gas field (Sankofa) in the western offshore of Ghana, as well as imports from Nigeria through the West African Pipeline (WAGP)
- Thermal power plants contribute around 1556 MWh which turns out to be 46.25% of total share in energy mix.

1. Energy	Opportunities	2. Economic A	analysis 3.1	mpact on people of Ghana	4. Conclu	usion		
	Thermal Power stations							
Power station	Community	Coordinates	Туре	Capacity (MW)	Year completed	Additional description		
Takoradi Thermal Power Station	Takoradi	4.971667°N 1.657228°W	Light crude oil or Natural gas	550	2000	A total of 550 MW is generated; four gas turbines and a steam turbine		
Kpone Thermal Power Station II	Kpone	5.673900°N 0.037500°E	Natural gas or Diesel fuel or Crude oil	340	2017 (Expected)	Biggest independent power plant in Africa to date.		
Kpone Thermal Power Station I	Kpone	5.734998°N 0.010548°E	Natural gas and Diesel fuel	230	2016 (Expected)	Owned by Volta River Authority		
Tema Thermal Power Station	Tema	5.677362°N 0.015828°E	Diesel fuel	236	2008	54 Caterpillar 3516B diesel power generators		
Sonon Asogli Thermal Power Station	Kpone	5.68029°N 0.047368°E	Natural gas	200	2010	Maximum installed capacity of 200MW. Often output is less than maximum		

1. Ener	rgy Opportunities	2. Economic Ana	lysis 3.Im	pact on people of Ghana	4. Conclu	usion
	C	urrent Solar Po	wer Stations in C	Ghana		
Solar power station	Community	Coordinates	Capacity (megawatts)	Year completed	Name of Owner	Notes
Nzema Solar Power Station	Aiwiaso Village	6.155567°N 2.419711°W	155	2022-2023 (Expected)	Blue Energy Plc.[9]	Seeking EPC proposals
3XC Solar Power Station	Onyandze, Gomoa West District, Central Region, Ghana	5.372778°N 0.693333°W	20	2016[11]	Beijing Xiaocheng Company	Operational
Gomoa Onyaadze Solar Power Station	Onyandze, Gomoa West District, Central Region, Ghana	5.346111°N 0.703333°W	20	2018[13]	Meinergy Ghana Limited	Operational
Navrongo Solar Power Station	Navrongo	10.880000°N 1.102778°W	2.5	2013	Volta River Authority	Operational
Kaleo Solar Power Station	Kaleo	10.174167°N 2.533611°W	13	2022	Volta River Authority	Operational

Source: US Department of Energy, National Renewable Energy Laboratory

*

GEOTHERMAL ENERGY

- Ghana has very complex geology dominated by Paleoproterozoic Birimian rocks consisting of five evenly spaced volcanic belts trending northeast-southwest
- Faults, fractures network zones were depositional sites for hydrothermal fluids, facilitating geothermal fluid flow by providing channels of high permeability
- Magmatic and granitoid intrusions with elevated thermal heat flux exist in
- As the hydrothermal fluids moved through faults between formations, affected by shear zones, hydrothermal reservoirs were created
- The transition zone between the volcanic belts and the sedimentary basins has been found to be the site of gold mineralization in Ghana

4. Conclusion

PROJECT "The Hybrid Future"

Re-energizing Ghana

Hybrid renewable energy system (HRES) comprises more than one power generation technology, either renewable or conventional fuel units, that work in a standalone or grid-connected mode

ADVANTAGES OF HYBRID ENERGY

- Increased capacity factor in the access point of the hybrid plant thanks to the complementarity of the load curves of both technologies.
- Switching between sources when one is inactive reduces the unpredictability inherent in renewable energy and improves the stability of the electricity supplied. Thus, the power on the supply point is ensured.
- Optimization on the use of electric infrastructures, involving synergies on O&M and CAPEX.
- Speeding up connection times and the commissioning of new renewable generation plants if there is no need to apply for a new access point

1. Insufficient power production to meet existing power demand 2. Some remote areas' geographical locations may preclude grid extension

Population :1892

4. Conclusion

The electrical appliance power ratings are classified into Tier 1 (very low), Tier 2 (low), Tier 3 (medium), Tier 4 (high), and Tier 5 (very high) based on the multi-tier approach

The derating factor is taken to be 85%. Also, a ground reflectance of 20% is considered.

The study adopted the World Bank's new multi-tier framework (MTF) energy access index (household use, productive use, and community use) to categorize the community's electricity demand

Load estimation of different categories				
Energy Access Index	AC loads (KWh/d)			
Household use	136.8			
Community use	33.36			
Productive use	92.64			
Total	262.8			

The PV array lifetime is assumed to be 30 years

Source: https://doi.org/10.1080/23311916.2022.2034376

3.Impact on people of 2. Economic Analysis 1. Energy Opportunities 4. Conclusion Ghana Hybrid energy system economic performance Variable **PV/Biogas PV/Diesel Diesel only** Unit Component cost CAPEX (\$) (\$) LCOE \$/kWh 0.265 0.450 0.980 Installation Lifetime Cost (years) Total CAPEX (\$) NPC \$ 506,629 861,099.50 1,875,373 (\$) Discount rate (%) Operating \$/yr 14,303.94 32,522.27 88,128.66 Replacement Cost cost (\$) OPEX Total OPEX O&M Cost (\$) (\$) Initial capital \$ 221,322.50 212,388.4 117,500 (\$) Lifetime Fuel Cost (years) (\$) Fuel cost \$/yr 342.78 18,860.82 66,974.57

Hybrid energy systems emissions							
Hybrid energy system	Renewable fraction %	Carbon dioxide emissions (kg/yr)					
PV/biogas/battery	100	313.68					
PV/diesel/battery	50.3	41,487.70					
Diesel only	0	147,322.40					

Source: https://doi.org/10.1080/23311916.2022.2034376

嘂

1. Energy Opportunities 2. Economic	Analysis 3.Impact or Gha	n people of ana	4. Conclus	ion
	Allocated Budget(\$ million)	Proposed Budget(\$ m	nillion)	Remaining(\$ million)
	901	900.28		0.72
PC per Mini Grid Hybrid Project: \$506,629	Based on the demand of energy over region		Energy Ac	ccess to different region
otal Project Cost given: \$901,000,000	Region	No of hybrid Power stations	Upper West	Upper East - 30%
	Ashanti Region	97		
	Brong Ahafo Region	180		Northern - 44%
otal estimated cost for the project: \$900,280,000	Central Region	146		5
	Eastern Region	185		2 Volta - 58%
otal power generated by all plants: 256.9 GWh/Yr	Greater Accra Region	19		Brong Ahafa - 63%
	Northern Region	273		Ashanti - 80% Eastern - 62%
	Upper East Region	341		Greate Greate
Iumber of mini grid Power Stations : 1777	Upper West Region	331	Western - 59%	Central - 70%
	Volta Region	205		0 15 30 e0 90 120 Klometers

Source: https://www.intechopen.com/chapters/68202

All developments are sustainable with minimal or no negative impact on the environment and cultural diversity

"Energy Togetherness- from thought to reality"

70+ **Ethnic group**

2000

24

Guinea

Zimbabwe Lesotho

Namibia

Liberia

Source: World Bank

50

*Countries with a Demographic and Health Survey since 2005

Over five-year period prior

to latest survey

"There is dire need to shift to cleaner cooking fuel to improve Health Care Index of Ghana"

Source: worldbank.org

Boost public health and provide local hospitals with sustainable electricity for medical treatment

Significant reduction in the equivalent CO2 emissions

Facilitate rural communities access to education resources

Employment in the construction and operation related jobs

Mentor

Petroleum Engineering IIT (ISM) Dhanbad

RANJAN KUMAR Petroleum Engineering IIT (ISM) Dhanbad

IIT (ISM) Dhanbad

AJAY KUMAR ANDREAS MATZAKOS Petroleum Engineering IIT (ISM) Dhanbad

 \star

Selected PV module technical specifications.

Parameter	Specification
Nominal Maximum Power (Pmax)	340 W
Maximum Operating Voltage (Vmp)	38.2 V
Maximum Power Current (Imp)	8.91 A
Open Circuit Voltage (Voc)	47.5 V
Short Circuit Voltage (Isc)	9.22 A
Module Efficiency STC	17.52%
Operating Temperatures	−40 °C +85 °C
Temperature Coefficient of Pmax	−0.38 %/°C
Temperature Coefficient of Voc	-0.31 %/°C
Temperature Coefficient of Isc	0.06 %/°C
Nominal Operating Cell Temperature (NOCT)	45 ± 2 °C

Key technical specifications for designing a battery bank

Variable	Value
Nominal Voltage	12 V
Maximum capacity	83.4 Ah
Capacity ratio	0.403
Rate constant	0.827 1/hr
Roundtrip efficiency	80%
Maximum charge current	16.7 A
Maximum discharge current	24.3 A
Maximum charge rate	1 A/Ah
Initial state of charge	100%
Minimum state of charge	40%
Throughput	800 kWh
Lifetime	5 years

Input parameter	Unit	Sensitivity ranges
Discount rate	%	6, 8, 10, 14, 16
Capital subsidy	%	25, 75, 50, 100
Price of biomass feedstock	\$/t	2, 4, 6, 8
Increase in electricity demand	%	+25, +50, +75, +100

Salient parameters for sensitivity test

Estimation of manure for anaerobic digestion

Livestock type	Population X _{live} ^a (heads)	Amount of manure ^ь (kg/head/da y)	Recoverabili ty Fraction ^c (kg/kg)	Technical Manure Potential Estimated (kg)
Cattle	300	12	0.2	720
Goat	1,568	2	0.2	627.2
Sheep	980	1.2	0.2	235.2
Pigs	190	2.5	0.5	273.5
Poultry (chicken)	5,251	0.07	0.3	110.27

Top 10 selected feasible PV/biogas hybrid system configurations

PV (kW)	Biogas Gense t (kW)	Batter y (kWh)	Conve rter (kW)	LCOE (\$/kW h)	NPC (\$)	Opera ting cost (\$/yr)	Initial Capita I (\$)	Fuel cost (\$/yr)	Capaci ty Shorta ge (%)
50	20	237	42.1	0.265	506,62 9	14,304	221,31 7	342.8	0.09
50	20	235	42.5	0.265	506,67 5	14,321	221,01 1	343.3	0.09
50	20	241	41.9	0.265	506,85 2	14,273	222,15 3	341.2	0.09
50	20	237	42.7	0.265	506,95 8	14,311	221,50 3	342.8	0.09
50	20	234	43.1	0.265	507,02 2	14,339	220,99 9	343.7	0.08
50	20	240	42.5	0.265	507,07 6	14,286	222,11 1	341.6	0.08
50	20	228	44.2	0.265	507,17 0	14,396	220,02 1	345.9	0.08
50	20	239	43.1	0.265	507,34 7	14,301	222,09 9	341.9	0.07
50	20	243	42.8	0.265	507,49 7	14,269	222,87 9	340.5	0.07
50	20	237	44.2	0.265	507,83 5	14,330	222,00 1	342.8	0.06

*

Mankramso's daily hourly load Profile

PV module supply and installation costs from local vendors.

Mankramso's monthly solar irradiation and clearness index.

Appliance distribution by tier category, duration, and electricity consumption

Source: https://doi.org/10.1080/23311916.2022.2034376

Energy Access Index	Index type	Appliances	Tier category	Quantity	Rated Power (W)	Time of use (hr/d)	Usage (hr/d)	AC loads (KWh/d)
Household use	Households							
		Television	2	200	80	19:00-22:00	3	48
		Radio	1	400	6	6:00-8:00	2	4.8
			1			17:00-20:00	3	7.2
		Mobile Phones	1	600	6	18:00-21:00	3	10.8
		Bulbs	1	1200	10	18:00-22:00	4	48
		Fan	2	200	30	19:00-22:00	3	18
Community use	Nursery school							
	3 classrooms	2 bulbs each	1	6	10	6:00-8:00	2	0.12
	1 office	Bulb	1	1	10	6:00-8:00	2	0.02
		External bulb	1	1	15	18:00-6:00	12	0.18
	Primary School							0
	6 classrooms	2 Bulbs each	1	12	10	6:00-8:00	2	0.24
	1 office	Bulb	1	1	10	6:00-8:00	2	0.02
		External bulb	1	1	15	18:00-6:00	12	0.18
		Desktop computer	2	1	100	9:00-12:00	3	0.3
		Printer	2	1	100	10:00-12:00	2	0.2
	Junior High School							0
	3 classrooms	2 Bulbs each	1	6	10	6:00-8:00	2	0.12
	1 office	Bulb	1	1	10	6:00-8:00	2	0.02
		External bulb	1	1	15	18:00-6:00	12	0.18
		Desktop Computers	2	3	100	9:00-12:00	3	0.9
		Printers	2	1	100	10:00-12:00	2	0.2
		Photocopier	3	1	200	8:00-10:00	2	0.4
	Health Clinic							
	2 wards	Bulbs (3)	1	6	10	00:00-23:00	24	1.44
	1 office	Bulbs (2)	1	2	10	19:00-7:00	12	0.24
		Vaccine refrigerator	3	1	100	00:00-23:00	24	2.4
		Microscope	2	1	30	9:00-11:00	2	0.06
		Small radio	1	1	6	12:00-18:00	6	0.036
		Television	2	1	80	8:00-20:00	12	0.96
	Street Lightning	Street Lights	2	20	100	18:00-6:00	12	24
	Community building	Bulbs	1	8	10	8:00-10:00	2	0.16
		Microphone	1	4	8	8:00-10:00	2	0.064
		Speaker	2	4	100	8:00-10:00	2	0.8
		Keyboard	1	4	15	8:00-10:00	2	0.12
Productive use	Grain milling	Milling machine	5	3	1000	8:00-14:00	8	24
	Cold store	Deep freezer	3	3	400	0:00-23:00	24	28.8
	Small business (tailoring, barbering salon, bars, grocery shops)	Hair clipper	1	5	15	8:00-16:00	8	0.6
		Iron	4	4	1000	10:00-12:00	2	8
		UV sterilizer	1	5	15	8:00-16:00	8	0.6
		Refrigerators	3	4	300	0:00-23:00	24	28.8
		Bulbs	1	5	10	8:00-16:00	8	0.4
		Fan	1	4	30	8:00-17:00	12	1.44

Source: https://doi.org/10.1080/23311916.2022.2034376