Switch Energy Case Competition 2022

Team Nimbus 2.0

Team Number - 148

Shivam Kumar Srushti Bhamare Roopmati Meena Shruti Prajapati

Indian Institute of Technology Bombay, India

Mentor: Mr. Patrick Welch

Country: Ghana

Overview

Ghana

Population: 31 million (2022)

Rural population: 13.3 million (2022)

GDP per capita: 2329 US\$ Global ranking: 75th

Average family income: 82 \$

Access to electricity: 86%

Main Economic Sectors: Agriculture, Industry & Services

Area: 238,533 km²

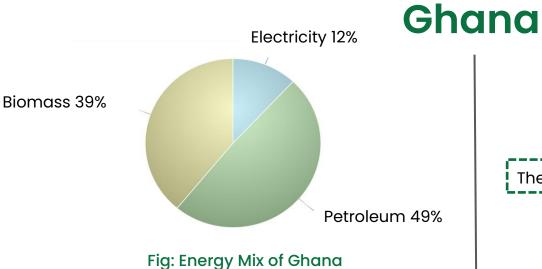
Ref: World bank, statistica

Access to clean cooking fuel: 22%

HDI Ranking: 133

Inflation rate (July-Sept' 22): 34%

CO₂ emission per capita: 0.7 metric ton



Life expectancy: 64 years

No. of states: 16 Capital: Accra

Energy Overview

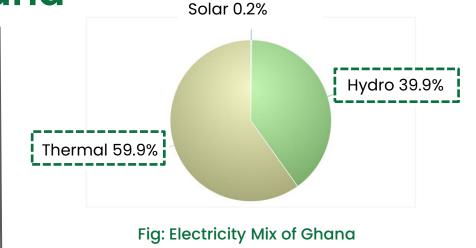
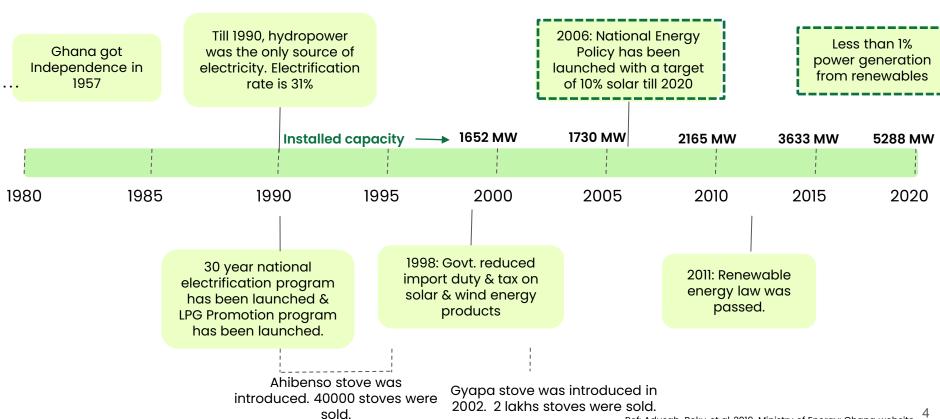
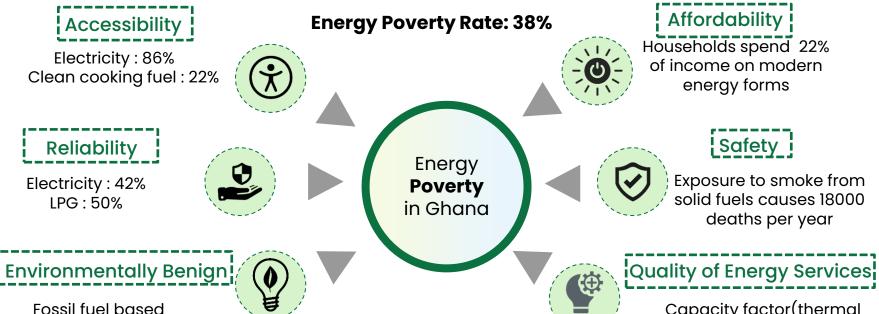



Table: Ghana's National Energy Policy 2006-2022 vs. Unfortunate Reality!

GHANA	Generation capacity	Access to electricity	Renewable energy	Access to clean cooking fuel
2020 Target	22.3 TWh	100%	10%	50%
2020 Reality	14 TWh	86%	<1%	22%


Ghana

Problem Overview

Problem

Energy Poverty

Capacity factor(thermal plants): 50% Capacity factor(hydro plants): 70%

Population using inefficient cookstoves: 78%

electricity: 60%

Population using unclean cooking fuels: 78%

Problem

Cooking Fuel Crisis

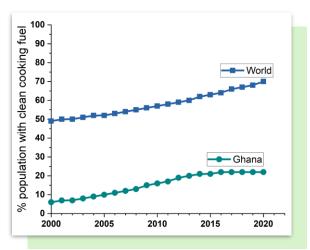


Fig: Year wise % population with clean cooking fuel

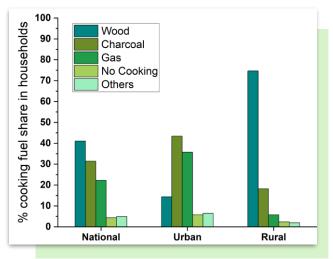


Fig: % cooking share in households

Exposure to smoke from solid fuels or inefficient fuels causes nearly 18,000 deaths/year in Ghana (WHO, 2018)

Chronic illnesses & acute health impacts:

Childhood pneumonia, cataracts, lung cancer, bronchitis, cardiovascular disease, and low birth weight

Women and young children most affected

> 2200 children die in Ghana / year due to acute lower respiratory infections (WHO, 2018)

Problem

Unreliable & Unaffordable Electricity

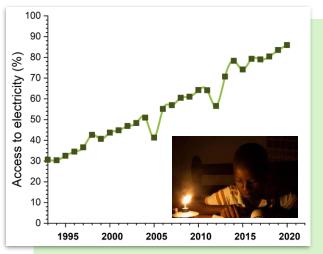


Fig: Access to electricity in Ghana

Rural: 76% Urban: 84%

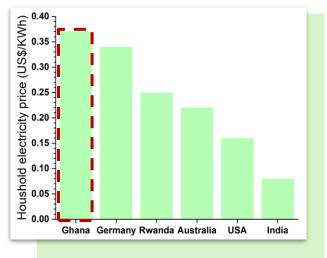


Fig: Country wise household electricity tariff

Electricity reliability: 42%

T&D losses: 25%

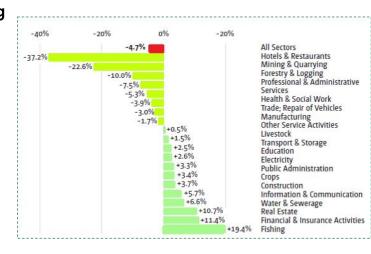
Ghana has moderately good but expensive electricity access, & the supply is highly unreliable

Solution Methodology

Objectives & Targets: 2050

Objectives

- -To cover **maximum population till 2050** with clean cooking fuel & reliable electricity.
- -To **reduce** cooking fuel cost & electricity **prices**.
- -To **reduce** indoor **pollution** & related health hazards
- -To reduce **GHG emissions** & improve socio-economic standards


Targets

- -Population with clean cooking fuel till 2050: **90-100%**
- -To provide **90-100% accessible** & **reliable** electricity
- -Reduce cost of cooking fuel **upto 80%** & for electricity upto **60-70%**.

Factors taken into account while deciding objectives & targets

- -Potential of various cooking fuel & renewable energy resources in Ghana
 - -Allotted Budget
- -Ability to develop & progress

Effect of COVID-19 taken into account by considering 2020 as base year

Cooking Fuel: Current Scenario

Current Scenario:

- 1. LPG is the only clean cooking fuel in Ghana
- 2. Merely 22% population has access to LPG

Current Policies:

- Launched in 2013, the Ghana Sustainable Energy for all (SE4ALL) Action Plan provides the current framework for household energy.
- The draft 2018 energy policy aims to address institutional and market barriers to LPG uptake. Targets in the draft policy include increasing adoption of efficient cookstoves by 20% by 2020, and increasing LPG use from 18% to 50% by 2020. These target are far away from reality.

To cater to remaining population, other sources needs to be explored...

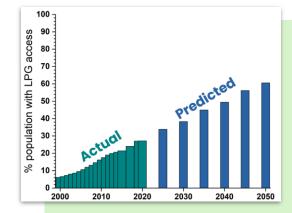


Fig: Population % with LPG access till 2050 (Prediction)

Region	Fuel type (%)							
	Non-wood	fuels	Woodfuels					
	Electricity	LPG	Kerosene	Agric residue	Others	Firewood	Charcoa	
Ashanti	0.6	7.5	0.7	0.1	0.7	50.6	39.9	
Northern	0.1	1.3	0.2	0.2	0.1	81.8	16.4	
Upper East	0.4	1.2	0	32.8	0.2	55	10.4	
Upper West	0	1.1	0.2	-	0.3	80.2	18.2	
Western	0.2	6.3	0.3	0	0.6	65.2	27.3	
Central	0.1	4.6	0.9	0.1	0.2	63.1	31.1	
Gt. Accra	0.3	29,4	2.1	-	_	7.2	59.8	
Volta	0.1	2.3	0.4	0.2	0.1	73.2	23.7	
Eastern	0.3	4.6	0.5	0.4	_	71.2	22.9	
Brong-Ahafo	0.1	2.7	0.3	0.2	0.6	77.6	18.5	
Ghana	0.3	8.5	0.7	1.3	0.5	56.6	32	

11

Solution for Cooking Fuel Crisis: Comparative Analysis

Alternatives cooking fuel sources

	Conventional Stove	Biogas	Improvised cooking stove	Solar cooker	Electric stove	LPG
					3	LPG
Type of Input	Wood, coal, charcoal, cow dung, etc.	Agricultural, animal, & human, municipal waste	Wood, coal, charcoal, cow dung, etc.	Sun	Electricity	LPG
Ease of availability	Require daily collection time of 3-4 hrs	Weekly activity of waste segregation	Require daily collection time of 3-4 hrs	No efforts but subjected to sun's availability	Subjected to reliable electricity supply	Subjected to LPG refill
Affordability	Cheap	Cheap	Cheap	Cheap	Expensive	Expensive
Health Hazards	Very Hazardous	Nil	Hazardous	Nil	Nil	Nil

Design

Solution for Cooking Fuel Crisis

Biogas: Design & Site Selection of Plant

- From the literature & surveys in Ghana, fixed dome with inbuilt gas holder is widely used (66%) & have following advantages.
- No moving parts
- No rusting steel parts hence long life (20 years or more)
- underground construction
- Affording protection from winter cold and saving space.

Construction of Biogas Plant

- Mixing tank: Present above the ground
- Digester: Biological reactions occurs
- Overflow tank: Spent slurry get stored

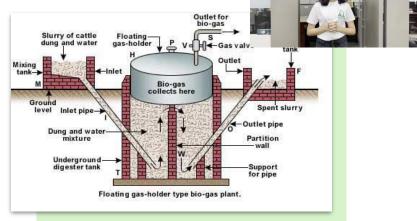
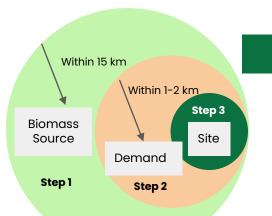



Fig: Design of fixed dome with inbuilt gas holder biogas plant

Site Selection Methodology

Step 1: Selection of the region

Step 2: Selection of the neighbourhood

Step 3: Selection of the site

Site selection differences in rural & urban area:

- In rural area, given site selection methodology will be used.
- For urban area, according to area & population of city which are using solid cooking fuels, distances will increase in the ratio of those parameters.

Sources of Biogas generation in Ghana

Municipal solid waste

Animal waste Field crop residue

Human excreta

Residue type	Quantity (Mt)	Biogas (Mm³ CH ₄ /year)
Field crop residue	20	1600
Process residue		750
Wood waste	0.35	19
Animal waste	2860	100
Municipal solid waste	2.1	230
Municipal liquid waste	0.56	17
Total	2883	2716

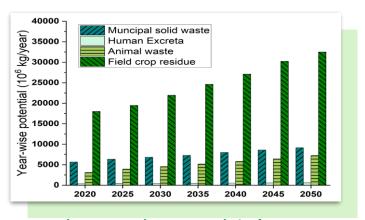
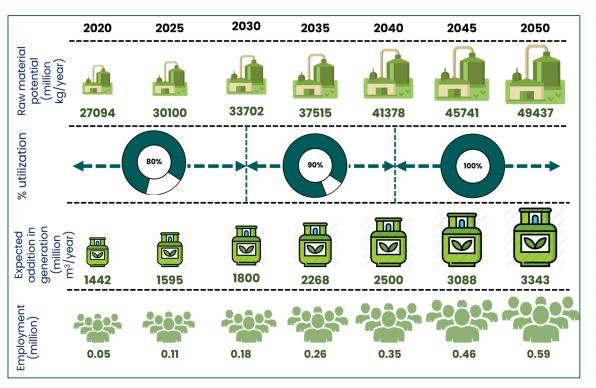



Fig: Year wise potential of waste

Biogas: Projections for Year-wise Capacity Addition

	States	Proposed % of Biogas Installation (till 2050)
1	Greater Accra	7%
2	Ashanti	18%
3	Eastern	10%
4	Central	10%
5	Northern	8%
6	Western	7%
7	Volta	6%
8	Upper East	4%
9	Bono	4%
10	Bono east	4%
11	Upper West	3%
12	Western north	4%
13	Oti	4%
14	North east	4%
15	Savannah	4%
16	Ahafo	3%

Implementation Roadmap for Biogas

Table: State wise capacity addition till 2050

LPG & Improvised Cookstoves

Proposed interventions for LPG adoption:

- (a) Expanded distribution of LPG in rural areas
- A cylinder recirculation program replaces the current system of individual ownership of cylinders
- 2. Motor-king (motorcycle with smaller trailer) distribution network from refilling stations to village retail outlets
- (b) Elimination of LPG taxes: carbon credit
 Subsidizing 23% tax on LPG by the government for the rural population

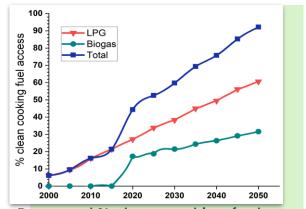


Fig: Proposed % clean cooking fuel access

LPG & Gyapa Stoves: Cost for consumers & Benefits

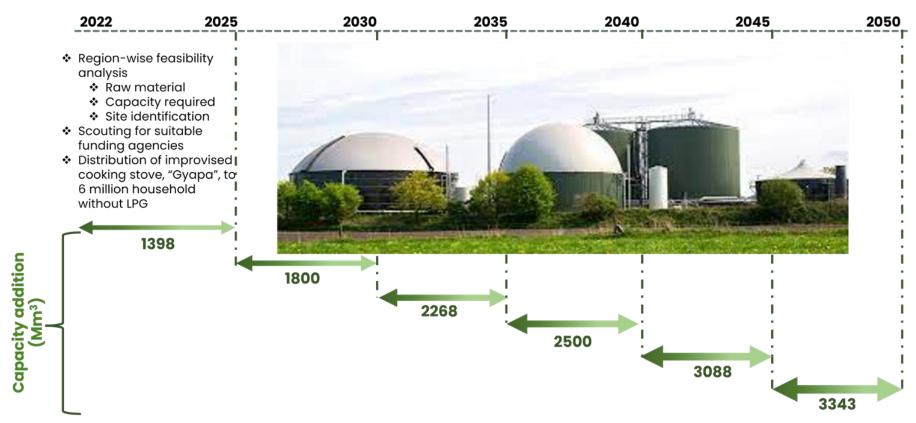
LPG Stoves & cylinder cost:

Cost of LPG stove	US\$ 30
LPG cost/litre	US\$ 0.5

LPG Benefits:

- Deployment is easier in urban areas so prefer urban areas first forthe LPG deployment.
- Easy to transport & skilled labours are present in the supply chain of LPG

Improvised Cookstoves: Gyapa cost:


Cost of Gyapa stove	US\$ 17.8
Stove O&M	US\$ 2.1
Total cost	US\$ _{19.9}

Gyapa Benefits:

- Faster cooking & 2.5-60% less fuel required
- Less smokey
- Distribution country wide at US\$ 110 Million

Implementation Roadmap: Biogas & Gyapa Stoves

Implementation Roadmap: Supply Chain Analysis

Tapping of Waste Material for Biogas

Step 1: Aware people to segregate municipal solid waste into dry waste & wet waste. Inform them to store Agricultural waste & animal excreta. Human excreta will get collected through pipelines reaching directly to the biogas plant

Step 2: Govt trucks will collect all the waste in (1-2 small trucks for each biogas plant) & they will transport it to Biogas plant

Solution for Unreliable & Unaffordable Electricity

SOLAR

Solution for Electricity Crisis

Current Scenario

Current Scenario:

- Ghana's power supply sources are from hydroelectricity, thermal fueled by crude oil, natural gas and diesel, and also imports from La Cote D'Ivoire. Ghana also exports power to Togo, Benin and Burkina Faso.
- The total installed capacity for existing plants in Ghana is 4,132MW consisting of Hydro 38%, Thermal 61% and Solar less than 1%

Current Policies:

- Renewable energy Act (Act 832), passed in 2011, seeks to create the enabling environment for attracting private sector investment in the renewable energy sector to ensure the achievement of the 10% policy target
- National roadmap to integrate nuclear power into Ghana's energy mix has been developed and accepted by the International Atomic Energy Agency (IAEA)

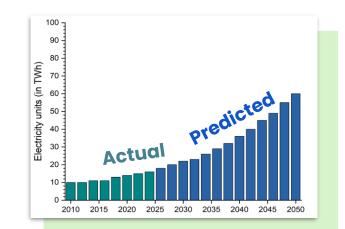


Fig: Predicted electricity demand till 2050

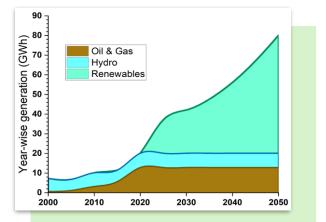
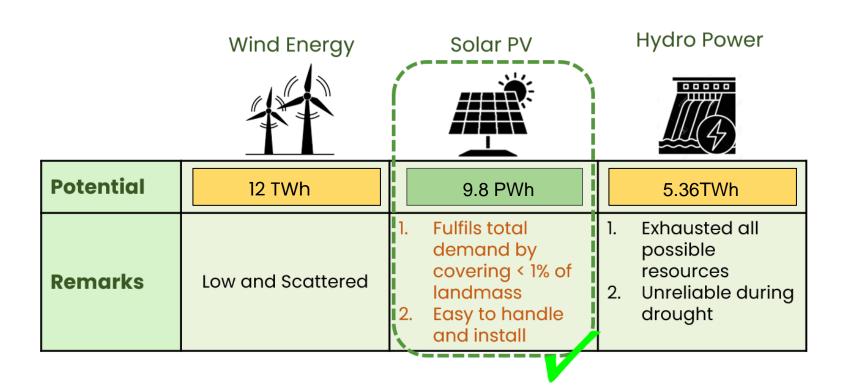
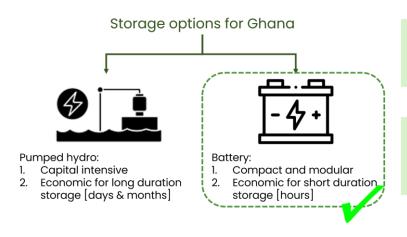



Fig: Proposed electricity mix till 2050

In 30 years, electricity demand is predicted to increase by 6x

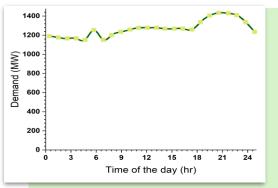
Solution for Electricity Crisis: Comparative Analysis


Alternatives Renewable Sources

Design

Solution for Electricity Crisis

Solar PV + Storage



Need for storage: 60% of power is consumed at night

Proposed solution: Solar PV + Battery storage

Our Proposal

- 2020 onwards all new capacity installment based only on renewable energy using solar PV
- Existing hydro and fossil fuel plants shall be used till 2050, with no new addition
- By 2050, solar PV will have contribution of 75% in total electricity mix

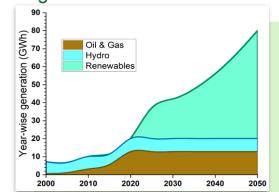
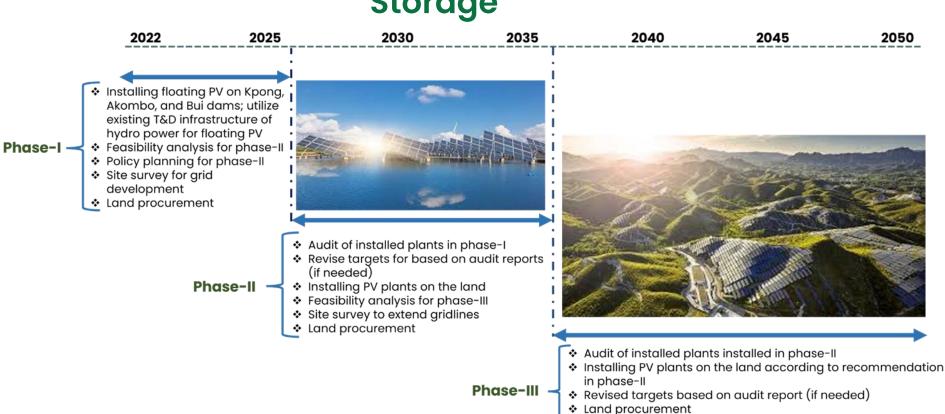



Fig: Proposed year-wise 22 generation from different sources

Solution for Electricity Crisis

Implementation Roadmap: Solar PV + Storage

Future planning & policy recommendations

Solution for Electricity Crisis

Solar PV: Projections for Year-wise Capacity Addition

	2020	2025	2030	2035	2040	2045	2050
Capacity factor (%)		21.5	23	24.3	25.7	27.2	28.6
Units of generation	0.024	3.4	4.7	5.4	8.2	12.0	12.7
(TWh) Solar PV				##			
Solar PV Installation (MW)*	50	6500	8500	9300	13300	18400	18500
LCOE (US\$/kWh)	\$ 0.18	\$	\$	\$	\$	0.08	0.06
	0.10	0.16	0.14	0.12	0.10	0.08	
Employment generation (Millions)		0.15	0.23	0.27	0.43	0.67	0.74

Solution for Electricity Crisis Implementation Roadmap: Supply Chain Analysis

SKILL DEVELOPMENT

- Government
- Private

FINANCE

- German Development Bank
- World bank
- ❖ IMF

PROCUREMENT

- CrossBoundary Energy
- Siginik Energy Limited
- Huawei Digital Power Technology
- ❖ Volta River Authority

TECHNICAL ASSISTANCE

- United States Agency for International Development (USAID)
- National Renewable Energy Laboratory (NREL)
- Elecnor (Spanish Company)

GENERATION

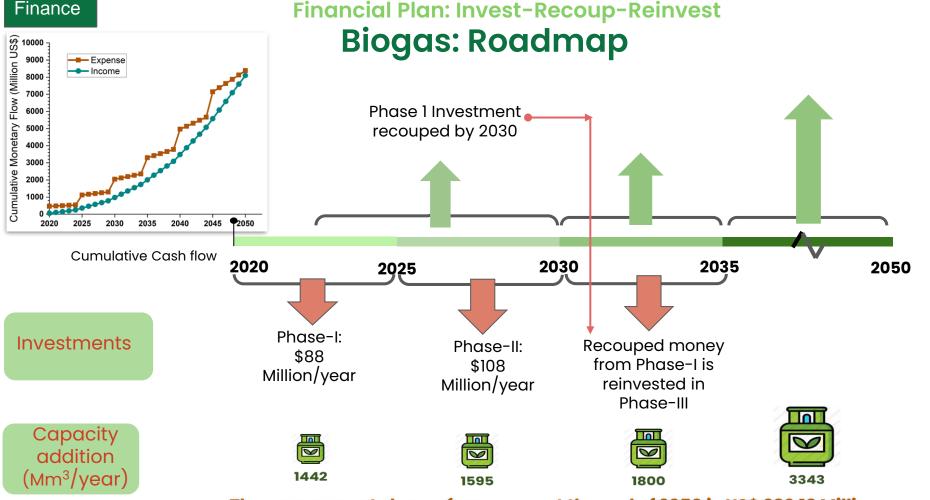
- Government
- Private

DISTRIBUTION

- On-grid: Urbanized areas
- Off-grid: Rural areas
- 1000 Km grid network installation at US\$ 250 Million

Financial Plan: Biogas

Financial Plan


Biogas: Background

Cost of Biogas Plant over the years

	2020	2025	2030	2035	2040	2045	2050
Fixed capital cost for 1 m ³ of biogas plant (US\$)	90	110	137	170	207	253	280

Cost of biogas for consumers

Biogas required per household	1.6 m³/day
Selling price to customer	US\$ 0.035/m³
O&M cost (% of fixed capital cost)	4
Inflation (%)	2

The government share of expenses at the end of 2050 is US\$ 282.18 Million

Financial Plan: Solar PV

Financial Plan

Solar PV: Model Selection

Model 2

Only Govt Installations Capital Needed = 38 billion US \$

- Exceeding the budget. Not a cheaper option
- Govt past targets haven't been reached yet

Only private player Installations & govt. Provides interest free loans.(govt. Pays interest to the banks with 2% interest rate Capital Needed = 2.44 billion US \$

- Exceeding the budget. Not a cheaper option - Lack of regulations &
- possibility of natural monopoly

Model 3

Both Govt & Private players' installations Capital Needed = 123 million US \$

- Well under the budget & cheaper option than other two models.
- Access to private sector finance & potentially increased transparency.

Year	Govt. Contribution
2025	20%
2030	20%
2035	20%
2040	10%
2045	10%

Table: Year-wise government contribution

10%

2050

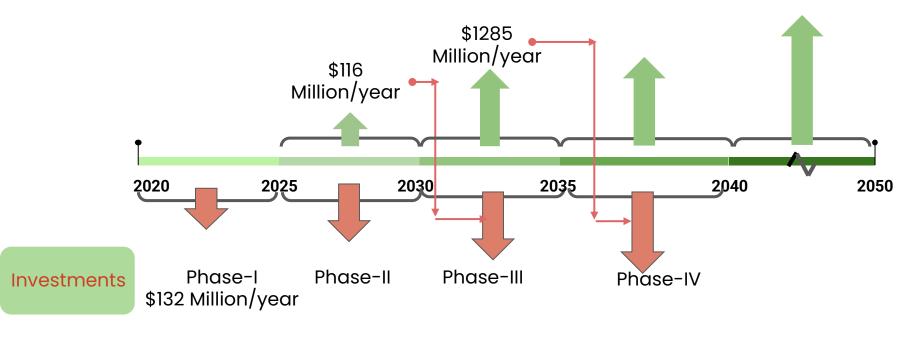
Public Private Partnerships

Financial Plan

Solar PV: Financial Results

Table: LCOE of electricity from solar over the years

	2020	2025	2030	2035	2040	2045	2050
LCOE (US\$/KWh)	0.18	0.16	0.14	0.12	0.10	0.08	0.06


Table:Assumptions

Solar PV fixed cost (Million US\$/MW)	0.5
No. of sunshine days	240
No. of sunshine hour	10
O&M cost (% of fixed capital cost)	10
Inflation (%)	2

Ref: IRENA 2020 31

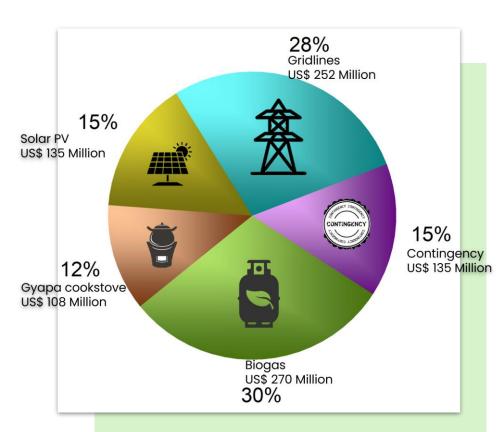
Financial Plan: Invest-Recoup-Reinvest

Solar PV: Roadmap

Capacity addition (MW/year)

The government will install 70 GW by 2050 at an expense of US\$ 135 Million

Final Fund Break-Up


Finance

Combined Financial Plan

- Total budget allocated: 900 Million US\$
- 15% budget of total budget kept as contingency to meet any unexpected financial demands from ongoing projects

Quantitative Metric

	Units/US\$	Beneficiary/US\$
Biogas	479 m³/US\$	0.4 people/US\$
Electricity	4269 KWh/US\$	0.04 people/US\$

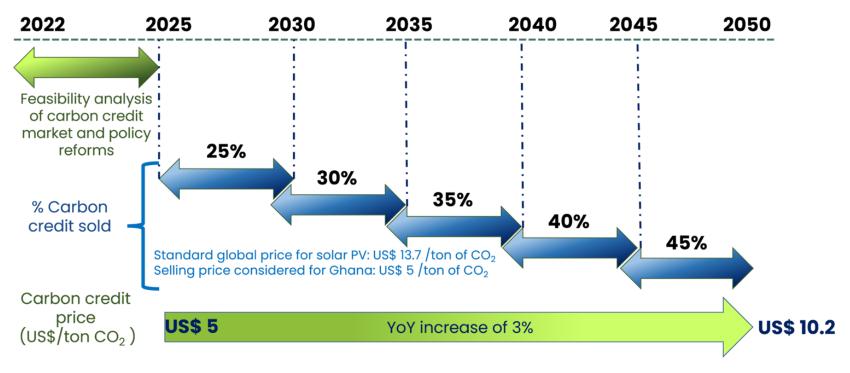
Monetizing Carbon Credits

Carbon Credits

Definition: Carbon offsets occur when a polluting company buys a carbon credit to make up for the greenhouse gas it has emitted

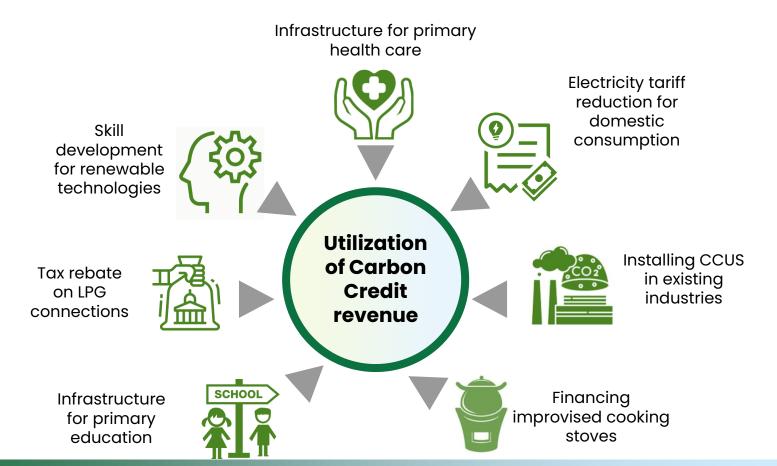
Carbon credit demand expected to increase 15x by 2030 and 100x by 2050!

Cost for carbon credits expected to reach between US\$20 and US\$50 per metric ton of CO₂ by 2030


African Development Bank (AfDB) has launched a two-year technical assistance program – **African Carbon Support Program**

Top companies buying carbon credits

Finance


Carbon Credits: Implementation Plan

Ghana is expected to generate a cumulative revenue of <u>US\$ 500 million</u> by end of 2050

Finance

Carbon Credits: Use of fund

Impact Analysis

Impact Analysis

Social & Environmental Impact

Our solution methodology impacts at least 10 sustainable development goals

Improving agricultural vield using biofertilizer

Reducing indoor air pollution by substitutina solid fuels

use in other productive activities

Sustainability analysis of solutions proposed

Mitigation of climate change

Decentralised plants to cater to all sections of society

Employment through construction work

Time saved from collecting Woodstock invested in education

Deployment of clean fuel options could help empower women and girls

Increase share of RE and access to clean fuel

povert\ **Economy**

energy

of reducing

Benefits

Revenue generated Debts settled Increase in long-term GDP More domestic and foreign investment

Environment

Reduction in GHG emission Reduction in deforestation

Health

Decrease in mortality rate Reduction in respiratory disorder Increase in life expectancy

Welfare

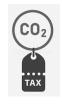
Education Skill training Cheaper power Improved standards of living

Ref: SDG, UN

Policy Recommendations

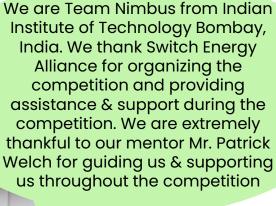
Govt. can encourage renewable energy on domestic activities

Govt must work on reducing T&D losses from 25% to 5% in the next 10 years


Escaping the Energy Trap

Govt. must open the electricity sector for private players

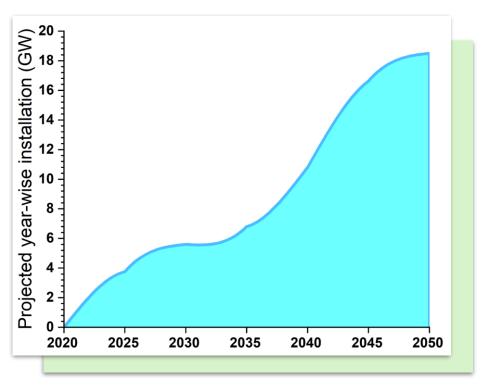
Govt must work on improving energy efficiency by making energy audits mandatory for industries



Revenue from CO₂ emission tax should be used towards Renewable development

TEAM

Nimbus 2.0

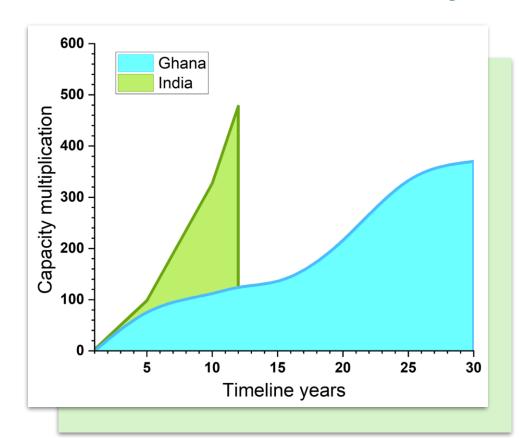


Thank You

Back-up

Solution for Electricity Crisis

Solar PV + Storage: Feasibility Analysis



Proposed plan: Ghana: 370 fold in 30 years

Fig: Proposed Year-wise installation plan

Solution for Electricity Crisis

Solar PV + Storage: Feasibility Analysis

Proposed plan: Ghana: 370 fold in 30 years

Actual data: India: 500 fold in 12 years from 2010-22

Fig: Comparative analysis on capacity multiplication

Solution for Electricity Crisis Taping of Solar PV Potential

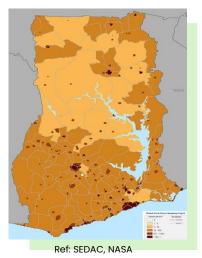
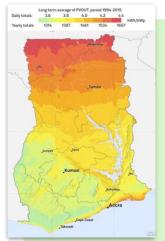



Fig: Population Density

Ref: Clean Technologies and Environmental Policy

Fig: Solar insolation

Ref: Global Energy Network Institute
Fig: Transmission Lines

	Northern & Central regions	Southern Region
Solar Insolation	Excellent	Average
Population density	Less	High
Interpretation	 Availability of empty land with great solar potential. Long transmission lines needed to bring electricity to southern region. 	Average potential. Benefitted with readily available gridlines

Executive

Summary

Problem Overview

- Ghana at a glance
- Energy Poverty in Ghana
- Cooking fuel crisis
- Unreliable & unaffordable electricity

Clean cooking fuel

- LPG and Biogas
- Technical & feasibility analysis
- Implementation approach & Timeline

Electricity: Affordable, accessible & reliable

- Solar PV + Battery storage
- Technical & feasibility analysis
- Implementation approach & Timeline

Finance

- Invest-Recoup-Reinvest model
- PPP model for electricity
- Cash-flow chart for investment

Environmental & social impact

- Reduction in carbon emission
- Carbon credit market exploration
- SDG analysis
- Policy recommendations