Switch Energy Case Competition 2023 Synergy Team-270

Country Pair Kenya-Bangladesh Home Country **Azerbaijan**

Mentor:Kamel Bou HamdanInstitution:Baku Higher Oil SchoolTeam Members:Medina ZiyadkhanovaNarmin NusalovaSevinj Mollayeva

Kenya

Bangladesh

Overview

Kenya

Bangladesh

Energy Overview

Executive Summary

Executive Summary

Problem Overview Kenya

Current Energy State

Source	Output	Nº	Voltage	Length	Percentage
		C	0 V – 9 kV	4 km	0.1%
geothermal	948 MVV	6	10 kV – 24 kV	16 km	0.3%
<u>hydro</u>	845 MW	24	25 kV – 51 kV	0 m	0.0%
oil	559 MW	7	52 kV – 131 kV	0 m	0.0%
	555 10100	/	132 kV – 219 kV	2,230 km	37.8%
<u>wind</u>	436 MW	3	220 kV – 329 kV	1,887 km	32.0%
solar	171 MW	9	330 kV – 549 kV	1,688 km	28.6%
diacol	07 \ 1\1/	2	550 kV –	0 m	0.0%
	07 IVI VV Z		No voltage tagged	71 km	1.2%
All	3,046 MW	51	Total	5,896 km	100.0%

51 power plants, 3,046 MW

5,896 km of power lines

Energy Poverty Factors

 Accessibility 24% use LPG, but many in informal areas still use polluting fuels. Urban areas: 97% electricity access; rural Kenya: 62% 	Affordability Affordability Kenyan electricity bills surged by 19% in April 2023, rising from \$0.17 to \$0.21 USD per kWh. Solution:
 Environmental Impact A deficit in fuel wood supply results: deforestation, famine, drought land degradation, and desertification. Heavy reliance on hydropower resulting in loss of water capacity in places like Lake Turkana. 	 Safety In three years, 345 people were electrocuted due to unsafe practices and negligence. Annually, 23,000 Kenyan deaths are attributed to household air pollution from traditional cooking fuels.
 A Quality of Energy Services In 2023, Kenya Power receives 700,000 new smart meters to address consumer power issues. Energy quality improves through the adoption of energy-efficient LEDs (80% energy savings) for lighting. 	 Security In July 2023, Kenya's energy infrastructure, particularly Kenya Power, experienced significant disruptions and security concerns due to cyber-attacks, highlighting vulnerabilities in the sector
 Reliability A nationwide outage on August 25, 2023, significantly disrupted Kenya's power supply due to problems at Africa's largest wind farm, Lake Turkana Wind Power plant, and grid system issues. 	Potential for RoadblocksBanks in Kenya avoid investing in renewable energy due to cost concerns.Rural residents hesitate to connect to the grid to connect to the grid electricity expenses.Corruption impedes energy efficiency efforts in Kenya.

Cooking Fuel Crisis

 \odot

Death

21.500 annual

premature deaths,

with acute lower

respiratory

infections

accounting for 26%

of hospital deaths.

Challenges Hampering Transition to Clean Residential Cooking Sectors

Health Risks and Diseases Associated with BMF Use

Women &

Children

Premature π

Indoor air pollution led to health issues in 92.0% of women & 95.4% of children. such as coughs, wheezing, fatigue, and headaches.

HAP from wood fuel in Kenya is associated with cardiac dysfunction and respiratory infections in children.

Unaffordable – Inaccessible - Unreliable Energy

Problem Overview Bangladesh

Current Energy State

Source	Output	Count
<u>gas</u>	11,570 MW	53
<u>oil</u>	7,162 MW	65
<u>coal</u>	2,493 MW	4
<u>solar</u>	452 MW	16
<u>hydro</u>	230 MW	1
<u>diesel</u>	105 MW	1
<u>wind</u>		1
[unspecified]		15
All	22,012 MW	156

156 power plants, 22,012 MW

Voltage	Length	Percentage
0 V – 9 kV	0 m	0.0%
10 kV – 24 kV	153 m	0.0%
25 kV – 51 kV	3 km	0.0%
52 kV – 131 kV	0 m	0.0%
132 kV – 219 kV	4,159 km	58.2%
220 kV – 329 kV	1,844 km	25.8%
330 kV – 549 kV	869 km	12.2%
550 kV –	0 m	0.0%
No voltage tagged	269 km	3.8%
Total	7,144 km	100.0%

7,144 km of power lines

Energy Poverty Factors

•	 Accessibility Clean cooking access in Bangladesh fell by over 1%, with 72% reliant on non-clean energy sources. Bangladesh uses only half of its 24,911MW installed electricity capacity due to policy flaws. 		• Affordability Bangladesh faces power cost challenges amidst a dollar crisis despite global price stability. Grid electricity comprises around 5% of household consumption (6.7% in urban, 3.4% in rural areas), sometimes exceeding the 5% affordability threshold.
έ,	Environmental Impact From 2001 to 2022, Bangladesh lost 228 kha of tree cover, equivalent to a 12% decrease in tree cover since 2000, and 124 Mt of CO_2e emissions. Deforestation for agricultural expansion also leads to habitat loss and biodiversity decline.		Safety Unsafe gas and power links heighten earthquake vulnerability, potentially exacerbating destruction. Titas Gas disconnected 602,884 illegal connections in Dhaka and Mymensingh divisions during 28,398 drives in the past 20 months.
** •	 ★ Quality of Energy Services More than 5,000MW of gas-fired power plants are sitting idle across the country. Last year's electricity shortage highlighted domestic gas exploration neglect. A year later, limited drilling and insufficient budget allocation persist. 		Security Bangladesh's primary sources of power production are coal, natural gas, and heating oil. The rising fuel imports and the substantial reliance on coal and gas to produce power raise questions about the security of the energy supply.
ľ	Reliability		Potential for Roadblocks
•	Bangladesh experiences unreliable 12,000MW generation, causing frequent outages and spurring industries to add 3,000MW of captive power. Over 400 storm-related outages occur annually.	•	Weak financial institutions, negative balance of payments, downgraded credit ratings, corruption, and imperfect competition could hinder Bangladesh's renewable energy investments.

Cooking Fuel Crisis

Challenges Hampering Transition to Clean Residential Cooking Sectors

The Market is flooded by poor/low-quality electrical appliances causing distrust in products.

n Political

The government KABITA program promotes ICS for free which negatively affects commercial viability of other technologies. Cultural

Cultural practices or habits that cannot be easily changed regardless of the availability of alternate options

In Bangladesh, exposure to indoor air pollution results in nearly 107,000 deaths every year, mostly women and children, who also bear much of the burden of collecting firewood or other traditional fuels.

Energy Crisis: Idle Plants, Outages, Soaring Prices

Comparative Analysis Problem Overview

Energy Poverty Factors

	Accessibility		Affordability		Reliability	Safety			
	Clean Ele		Clean Electricity		Household			Annual Deaths	
	Cooking Fuel %	Urban %	Rural %	Cost per kWh (USD)	Expenditure Share %	Longest Blackout (hours)	Indoor Air Pollution	Electrocution	
Kenya	24	97	62	0.21	14.16	14	23000	149	
Bangladesh	28	100	100	0.071	6.20	12	107000	5600	

	Security		Qua Sei	Quality of Services Enviror		nmental Impact		Roadblocks			
					Land	Water	Air				
	Households with Illegal Connections	Attacks Caused Disruptio ns	Smart Meters	Idle Plants	Deforestation (kha)	Surface Level Decrease (%)	CO2 Emmissions (metric ton per capita)	Corruption	Low Investment Interest	Cultural Sensitivity	Lack of Comprehensive Transition Strategy
Kenya	500,000	\checkmark	\checkmark	NA	6.29	25	0.37	\checkmark	\checkmark	\checkmark	\checkmark
Bangladesh	NA	~	✓	\checkmark	228	NA	0.51	✓	\checkmark	~	✓

Conclusion and Takeaways

Similarities

- Both Kenya and Bangladesh face challenges related to energy poverty and inadequate access to electricity in rural areas.
- In both countries, efforts have been made to expand access to energy, including through off-grid and minigrid solutions to reach underserved populations.

Differences

- Kenya has made significant progress in increasing access to energy, particularly in rural areas, through initiatives like the Last Mile Connectivity Project, whereas Bangladesh has been working on expanding access more recently.
- Bangladesh has a higher electrification rate than Kenya, but still experiences disparities in access between urban and rural areas, whereas Kenya faces more significant access challenges in remote regions.

Access to Energy

Similarities

- Both Kenya and Bangladesh are making efforts to promote renewable energy sources as an alternative to fossil fuels.
- Solar energy is gaining momentum in both countries as a renewable energy source, with numerous solar projects being developed.

Differences

- Kenya has a strong geothermal energy sector and is considered a leader in geothermal power in Africa, while Bangladesh has not yet tapped into significant geothermal resources.
- Bangladesh has shown interest in wind power projects and has invited bidders for projects totaling around 150MW, while Kenya has already established a substantial wind energy presence with projects like the Lake Turkana wind farm.

Renewable Energy

Similarities

- Both Kenya and Bangladesh are working on improving energy efficiency to reduce energy wastage and enhance sustainability.
- Efforts to adopt energy-efficient technologies and practices are being promoted in various sectors of the economy in both countries.

Differences

- Kenya has made significant strides in improving energy efficiency, particularly in the transport sector, with the introduction of initiatives such as electric buses and the promotion of energy-efficient appliances. Bangladesh is in the early stages of implementing such initiatives.
- The industrial sector in Bangladesh faces challenges related to energy efficiency, and there is room for improvement in this regard, whereas Kenya has made progress in enhancing industrial energy efficiency.

Energy Efficiency

Similarities

- Both Kenya and Bangladesh recognize the role of governmental policies in promoting renewable energy and sustainability.
- Both actively engage with international organizations and seek financing from institutions like the World Bank and the Asian Development Bank for their renewable energy projects.

Differences

- Kenya has canceled environmental licenses for coal-fired projects like the Lamu coal power project, signaling a shift away from coal. In contrast, Bangladesh is still considering coal power projects, including the Rampal coal-fired power plant.
- While both countries work to improve their renewable energy sectors, Kenya is more assertive in promoting its potential as a renewable energy leader in Africa, while Bangladesh is catching up with the rest of Asia.

Government Policies

Solution Methodology Cooking Fuel Crisis Kenya

Success Indicators

- 100% electricity access by 2050 (grid/off-grid)
- 100% renewable grid electricity by 2050

Focus on electrification (urban) and biogas (rural):

- 24% access to bioethanol cookstoves by 2050
- 42% access to biogas and bioethanol by 2050

In urban areas, LPG is a transitioning fuel:

• **34% access** by **2050**

Overall **solid biomass** use is **reduced** by **77%** by **2033** of which **100%** has **access** to **improved cookstoves** by **2033**. Traditional and solid biomass use for cooking is **phased out** by **2050**. Based on regional best practices and top-down l assumptions. (IEA, 2020b, Lambe, Nyambane & Bailis, 2020; Ministry of Energy, 2022a)

Targeted SDGs

Cooking Fuel: Current Initiatives and Policies

Forestry Laws, Policies, and Regulations

- **2016 Forest Conservation and Management Act:** Regulates unauthorized charcoal possession, calls for a national forest policy and strategy, and governs sustainable charcoal and fuelwood production.
- **2020 Draft National Forest Policy:** Drives governance reforms, focuses on restoring degraded forests, and tackles deforestation and governance challenges.

- Energy Laws, Policies, and Regulations
- 2019 Energy Act: Guides energy transition, establishes REREC, and devolves functions to County governments.
- 2019 Energy (LPG) Regulations: Updates LPG rules for user safety.
- 2020-2027 National Bioenergy Strategy: Promotes sustainable bioenergy and aims for clean cooking and modern bioenergy access.

Climate Laws, Policies, and Regulations

- 2018-2022 National Climate Change Action Plan (NCCAP): Prioritizes clean cooking and sets targets for cleaner fuels and improved cookstove adoption by 2022.
- 2020 Updated NDC: Aims for a 32% reduction in emissions relative to a business-as-usual scenario by 2030 to meet Paris Agreement goals.

Public Sector Laws, Policies, and Regulations

- Kenya Off-grid Solar Access Project (KOSAP) (2017-2023): A \$150 million World Bank project targets providing electricity and clean cooking solutions to underserved areas by 2023, with a focus on private sector involvement.
- Promotion of Climate-Friendly Cooking in Kenya (2020-2025): Funded by the GCF and executed by GIZ with partners, it aims to promote improved cookstoves in rural areas and aligns with NDC goals.

• **National Biomass Briquette Programme (2016-2022):** A multi-stakeholder initiative with Hivos, Greening Kenya Initiative, the African Centre for Technology, Practical Action, and the Kenyan government, promotes innovative briquette technologies and aims to increase the adoption of briquettes as a cleaner fuel through supply chain development. %

Fiscal Policies Affecting The Cooking Sector

- 2018 Finance Act: Increases kerosene excise duty, adds 8% VAT to petroleum products, and introduces an anti-adulteration levy to deter household kerosene use.
- 2020 Finance Bill: Reapplies 16% VAT on LPG and clean cookstoves, undermining clean cooking promotion and raising costs for consumers.

Key Takeaways and Action Plan

Current policies prioritize modern cookstoves over clean cooking solutions. To align with Kenya's climate and development goals, recognizing the synergy between climate action and sustainable development in residential cooking is crucial for a sustainable future.

In Kenya, households use multiple cooking fuels, with rural areas relying on fuelwood, urban areas on LPG. To promote clean cooking, supportive a policy framework is crucial, considering sociocultural and economic factors.

Establish permanent a coordinating body in a Ministry to unify policies and strategies for the cooking sector, ensuring alignment amona stakeholders. Develop longterm plans for efficient utilization resource and monitoring progress.

comprehensive, Create a cooking sector long-term strategy, transition align existing policies, with analyze where needed, and emphasize mitigation potential and health benefits.

Emphasize clean cooking solutions for a long-term transition, with a **focus on** LPG and improved biomass. Address market and challenges infrastructure and explore **region-specific** solutions through feasibility studies, leveraging the Energy Act of 2019.

3

Integrate clean cooking to achieve climate development targets, align with the Paris Agreement, and raise awareness among

and

stakeholders and the public, emphasizing health benefits and using financial incentives alongside communication efforts.

5

Enhance **cooking sector data** collection and analysis to improve policy accuracy. Establish a central coordination entitu for national-level data management and support county governments in data collection.

Kenya Energy Transformation Office (KETO)

Comparative Analysis: Cooking Fuel Sources and Stoves

	Advanced							
			0					
	Briquettes	Bio-Ethanol	LPG	Biogas	Electricity			
Stove	Kenya Ceramic Jiko	Bio-Ethanol Stove	LPG Stove	Basic Biogas Unit	Electric Stove			
Accessibility	Briquettes made from unused materials like bagasse, coffee and maize residues, or sawdust.	Denatured bio-ethanol for cooking is only available from a few emerging providers like KOKO Networks, Leocome, and Safi International.	In Nairobi, LPG is widely available, with 20% using it as their primary fuel and 40% having LPG stoves.	Farmers are encouraged to keep 2-4 cows to use their dung for biogas.	Limited availability; the residential grid is designed for lighting only, requiring substantial capital investment			
Cost of Stove	1000-1500 Ksh	Koko Bioethanol Stove: 1715 Ksh	3500-7000 Ksh	50000-70000 Ksh	3500-5000 Ksh			
Cost of Fuel	1 Bag: 1500 Ksh	1 Liter: 70 Ksh	1 (Kg=Liter): 168-200 Ksh	0	Per Kwh: 31 Ksh			
Efficiency	20%-50%	n/A	55%	n/A	80%			
Health and Environment al Impact	Agricultural waste can worsen air pollution, but unused materials for briquettes offer a greener choice.	It contributes to the use of sugarcane waste disposal otherwise dumped in rivers.	LPG stoves emit 50 times less pollutants than biomass burning stoves.	None	It depends on the electricity sources.			
Pollution	Low	Low	Low	Low	Low			

Design: Solution for Cooking Fuel Crisis

Biogas: Comparative Analysis of Digesters

Fixed Dome Digester

ADVANTAGES

- ✓ Durable long lifetime
- \checkmark No moving or rusting parts included
- \checkmark Compact design, less land required
- ✓ Easy operation
- \checkmark Long life span of 15-20 years
- \checkmark Compact and well-insulated design
- \checkmark Protected from temperature fluctuation

Floating Drum Digester

ADVANTAGES

- ✓ Stored gas volume is instantly recognizable
- ✓ Steady gas pressure
- ✓ Long lifetime of the digester (20 years)
- \checkmark Simple operation
- \checkmark Can be equipped with mixing devices
- \checkmark Compact design, less land

Plug Flow Digester

ADVANTAGES

- ✓ Low initial cost
- ✓ Light weight easy to transport
- \checkmark No civil work needed
- ✓ Easy low-cost maintenance
- ✓ Less subject to temperature variation when equipped with greenhouse tunnel
- \checkmark Efficient substrate fermentation
- \checkmark Portable and expandable systems
- ✓ Easy to load, unblock and empty due to the open-ended tube
- ✓ Retention time 15 days

Biogas: Design of Plug Flow Digester Plant

- The utilization of tubular digesters in Kenya is driven by the opportunity cost of **not collecting firewood**, using animal waste for energy, and improving farm sanitation.
- Biogas digesters, including the plug flow type, have proven to be **effective year-round**, both in summer and winter.
- The system has been successfully implemented in Kenya as part of the Making Biogas Portable project, distributing 500 units.
- The economic and technical characteristics of the tubular biogas digester eliminate most barriers to biogas dissemination in rural areas of Kenya, making it a practical design for rural settings.

Components of Plug-Flow Digester Collection/Mix Tank: Used for achieving a solids concentration between 11% and 14%.

 $CH_4 \& CO_2$

Biogas

Liquids &

Solids

- 2. Plug-Flow Digester: Heated, in-ground tank for biogas production, with options for cover types.
- **3. Biogas Utilization System:** Converts recovered biogas into heat, hot water, cooling, or electricity.
- **4. Solids Separator (Optional):** A mechanical separator between the digester outflow and effluent storage.
- 5. Methane Recovery System: Collects and directs biogas for utilization.
- 6. Solid Cover: Corrosion-resistant, minimal gas storage cover.
- 7. Inflatable Cover: Coated fabric cover with gas storage capabilities.

Livestock

Manure

Manure Digestion

Aided by Heat Source

8. Floating Cover: Lies flat on the digester surface.

Flexi Biogas System

Biogas: Sources of Generation

Transitioning Fuels: LPG & Bio-Ethanol

Projections Timeline: Biogas-LPG-Bioethanol

Implementation: Solution for Cooking Fuel Crisis

Implementation Timeline

	(2023-2024): Setting the	(2025-2026): Pilot Phase	(2027-2029): Exp	anding LPG (2030-	2032): Biogas Expansion	Year 2033: Achievemer	nt and
	Foundation	for LPG in Urban Areas	and Introducing	Bioethanol in Rura	al Areas	Expansion	
1.	Establish the Kenya Energy Transformation Office (KETO) as an independent entity to oversee and coordinate cooking sector and electrification initiatives.	 Launch a pilot program for LPG distribution in urba areas. Boda bodas play significant role in LP delivery. Train boda boda drivers 	r 1. Scale up LPG n using boda bod a more urban hou G 2. Establish production fac	distribution 1. Prom das to reach area seholds. orga bioethanol 2. Emp cilities using biogo	note biogas systems in rura s using agricultural and nic waste as feedstock. loy locals to implemen as systems with electric	 I. Measure progress electrification goals in u rural areas. I. Measure progress electrification goals in u rural areas. I. Assess revenue generatic the sale of LPG, bioeth bioggs 	towards urban and on through nanol, and
۷.	implementation, optimizing project execution and resource utilization.	safe LPG handling an distribution.3. Start importing LP	d maize, and casso 3. Develop a G bioethanol pro	ava. 3. Expanded network of villag duction and biogr	nes. Ind financing solutions fo ges upon the completion o as systems.	r 3. Evaluate the impact of cooking fuel adoption. 4. Continue scaling (on clean up LPG,
3.	Seek funding through generated revenue, concessionary loans, and modest grants to prevent budgetary strain.	equipment and engine needed for distribution. 4. Implement LPG awarenes programs in urban centers.	s distribution cent 4. Train local cor is the production bioethanol for co	ers. 4. Cont mmunities in on b and use of light poking. gene	inue support and educatior iogas utilization for cooking ing, and electricity tration in rural communities.	n bioethanol, and biogas a g, both urban and rural area y 5. Implement policies to the use of solid biomass f	adoption in as. phase out or cooking.
		Year 2023 2024	2025 2026	2027 2028	2029 2030 2	2031 2032 2033	
	Establishing the Kenya Energy Transformation (KETO's Planning and Implementat Securing Funding for Sustainab	Office (KETO) .tion Strategy ble Initiatives					
	Piloting LPG Distribution in Training Boda Boda Drivers for LI Importing LPG Equipment Raising LPG Awareness in Ur	Urban Areas .PG Handling : and Engines Irban Centers					
	Scaling Up Urban LPG Establishing Bioethanol Product Developing Bioethanol Production and Distribut Community Training for Bioethan	C Distribution tion Facilities ition Network nol Utilization					
	Promoting Rural Bio Local Employment for Biogas System Imp Expanding Financing Solutior Support and Education for Rural Biog	ygas Systems olementation yns for Biogas gas Adoption					
	Measuring Progress in Urban and Rural & Assessing Revenue Generation from Clean Co Evaluating Clean Cooking Fuel Adop Scaling Up LPG, Bioethanol, and Biog	Electrification Sooking Fuels ption Impact gas Adoption Biomass Use					

Implementation: Solution for Cooking Fuel Crisis

Solution Methodology Electricity Crisis Kenya

Current Scenario and Projections

- **Reference (REF):** No GHG emission reduction or renewable energy deployment policies have been enacted or proposed after 2010.
- **High carbon price (TAX):** A global carbon market exists with exogenously assigned CO2 prices, increasing from \$50/tCO2e in 2020 to \$162/tCO2e in 2050.
- **Paris commitment (NDC):** A 20% emission reduction is achieved in Kenya in 2030, compared to the REF scenario, without considering LULUCF. The maximum allowed emissions level remains constant in subsequent years until 2050. In the rest of the world, a cap-and-trade system is in place with a global target for 2050 to reduce GHG emissions by 20% compared to 2010.
- **Carbon cap (CAP):** A cap-and-trade system is in place with a target to reduce global GHG emissions in 2050 by 30% compared to 2010; CO2 prices are determined endogenously, and the target is also separately achieved in Africa.

Design: Solution for Electricity Crisis

The top exports of Kenya are Tea (\$1.2B), Cut Flowers (\$766M), Coffee (\$262M), Refined Petroleum (\$247M), and Titanium Ore (\$194M), exporting mostly to Uganda (\$831M).

Refined The top Kenya imports of are Petroleum (\$3.53B). Palm Oil (\$1.26B). Medicaments (\$554M). Packaaed Cars (\$549M). and Hot-Rolled (\$508M), Iron importing mostly from China (\$5.81B)

Energy Barriers and Policies

Key Policies

- 1. The Kenya Energy Act of 2019 consolidates energy laws, outlines the roles of 11 energy sector entities, supports community development through royalty allocations and rural electrification, and enforces licensee requirements while promoting renewable energy and reducing electricity bills through net-metering.
- 2. Kenya's 2018-2022 Climate Change Action Plan prioritizes low-carbon, climate-resilient development, focusing on water, energy efficiency, and renewable electricity. Initiatives include solar panel installation, energy efficiency programs, and sustainable transportation.

Ø 7 Barriers That Policies Address

- **1. Financial Accessibility:** The Kenya Energy Act provides funds for communities affected by geothermal extraction and establishes the Rural Electrification Program Fund. No specific projects are outlined.
- **2. Cost Recovery and Affordability:** The Kenya Energy Act encourages energy efficiency, while the NCCAP emphasizes public transport expansion and electric vehicles.
- **3. Grid Management and Expansion:** The Kenya Energy Act sets up 11 energy sector entities, clarifies electricity discontinuation, and focuses on comprehensive grid management. The NCCAP promotes renewable energy and loss reduction.
- **4. Policy Uncertainty, Political Priorities, and Development Policies:** Both policies prioritize sustainability and renewable energy. Clear political goals are established, but community-based efforts are not addressed.
- **5. Electricity Reliability:** Neither policy provides strong mechanisms for improving reliability.
- **6. Illegal Connections:** The Kenya Energy Act addresses illegal connections with strict standards but lacks integration programs. The NCCAP does not mention illegal connections.
- Development of Renewable Energy Resources: Both policies support renewable energy through entities and financial incentives in the Kenya Energy Act, and goals and projects in the NCCAP.

BARRIER TO ELECTRIFICATION	STRENGTH OF POLICY RESPONSE	CURRENT POLICY MECHANISMS USED TO ADDRESS BARRIER
Financial accessibility	Weak	Funding for rural electrification & geothermal impact relief.
Cost recovery, energy Moderate usage, & affordability		Mandate meters, energy efficiency plan, and public transit electrification.
Grid management & expansion	Moderate	Establish 11 energy sector regulators, clarify shutdown reimbursements, and seek 2.406 MW of renewable capacity.
Policy uncertainty, political priorities & development policies	Moderate	Prioritize sustainability with policies like feed-in tariffs, GHG reduction goals, and establish regulatory agencies.
Electricity reliability	Weak	Boosting efficiency by cutting losses, penalizing illegal shutdowns.
Illegal connections	Weak	Enforcing strict requirements for licensed electricity distributors and electricians, with punitive measures against illegal connections.
Development of renewable energy resources	Strong	Renewables plan, tariffs, net metering, agencies, 2.406 MW goal, green bonds

Key Takeaways and Action Plan

Financial Accessibility

- Expand consumer financing options for electricity connections, particularly for rural and inner-urban poor populations.
- Implement targeted financial assistance programs to identify and support those in greatest need.
- Collaborate with financial institutions
 to offer low-interest loans and |
 payment plans for connection fees.

2 Cost Recovery, Energy Usage, & Affordability

- Develop household-level initiatives to encourage electricity usage, such as promoting energy-efficient appliances and educating consumers on costsaving practices.
- Incentivize energy-efficient public | transportation & electric vehicle. |
- Increase electricity consumption at the household level.

3 Grid Management & Expansion

- Enhance regulatory oversight to ensure energy sector entities meet key objectives.
- Modernize the grid infrastructure for efficiency and revenue loss reduction.
- Promote collaboration between government, utilities, and local communities for efficient grid expansion and management.

4 Policy Uncertainty, Political Priorities & Development Policies

- Prioritize transparent policy and regulation.
- Define clear rules for minigrids and solar systems.
- Involve local communities in equitable, eco-friendly energy projects.

5 Electricity Reliability

- Upgrade grid infrastructure to minimize outages.
- Create a comprehensive strategy to enhance electricity supply reliability, covering maintenance and outage response.
- Offer incentives for backup power system adoption by businesses and households.

6 Illegal Connections

- Work with law enforcement to dismantle illegal energy cartels.
- Run public campaigns against illegal connections and promote safety.
- Adopt a community-based approach to integrate illegal connections safely into the grid.

Development of Renewable Energy Resources

- Sustain feed-in tariffs and net-metering for renewables.
- Set generation targets and create regulatory bodies.
- Invest in R&D for diverse, sustainable energy tech.

Comparative Analysis: Renewable Sources

	Geothermal	Hydropower	Solar PV	Wind Energy
Potential	7-10,000 MW	3,000MW	4-6kWh/m2 (per day)	73% of the country with 6m/s or higher
Installed Capacity	828.04 MW	826.23 MW	52.0 MW	336.05 MW
Feasibility	Kenya's substantial geothermal potential (7,000-10,000 MW) in the Rift Valley offers a greener future.	High installation costs (\$2,500 per kW) discourage hydropower development.	Kenya has significant solar potential (4- 6 kWh/m2 daily insolation).	Kenya's topography offers high-wind regions in the northwest and along the Rift Valley edges.
	With 828.04 MW currently, geothermal is a promising energy source for Kenya's future.	Inadequate data and local capacity hinder small hydro exploitation.	Government initiatives focus on solar electrification for rural schools and healthcare facilities.	Approximately 25% of Kenya's land area supports wind energy for grid-connected and off-grid applications.
	The geothermal Development Company (GDC) drives Kenya toward a geothermal-powered future.	Climate change risks affect hydropower reliability.	Stringent energy regulations and The Feed-in-Tariff Policy ensure quality solar PV installations.	Land access and transmission pose Challenges in wind energy developmen
	Past geothermal projects displaced indigenous communities, raising concerns.	Underutilization of Kenya's small hydro potential.	The country aims for a solar potential of nearly 15,000 MW, promoting ongoing projects and investments.	Marsabit and Turkana have high-wind areas with speeds exceeding 9 m/s at 50 meters, ideal for wind projects.
	Inadequate consultation and transparency may violate legal requirements.	Rising oil prices boost the appeal of hydropower sites.	Kenya's Vision 2030 emphasizes clean, reliable energy for industrialization, boosting solar power and component manufacturing.	Wind resource maps confirm sufficient wind energy potential across a quarter c Kenya's territory.
	The Maasai community's freshwater source is at risk from geothermal drillina.	Government conducts feasibility studies for potential hydropower sites.	Current solar capacity exceeds 100 MW, with more projects underway, highlighting investment opportunities.	Recent installations indicate a growing interest in wind energy.

Solar PV + Storage

Battery:

- 1. Modular and compact
- 2. Economically beneficial when short duration of storage required

When solar electricity is stored, it serves as insurance for energy availability after sunset, providing grid operators with a reliable source.

Proposed Solution:

- Continue to utilize existing **geothermal and hydropower** plants without adding additional capacity.
- All new capacity installations will be dedicated to renewable energy sources, specifically **solar and wind**.
- By 2030, aim for a 17-19% contribution of solar PV and wind energy to the electricity mix each. By 2050, strive to increase this percentage share to 30% for both sources.
- Phase out the use of biomass, reducing it to 34% by 2033 and further down to 1% by 2050.
- Organically increase the percentage share of hydropower and geothermal to 8% and 30%, respectively, by 2033.

Innovation: ENLIL Wind Turbines

ENLIL, a smart vertical axis wind turbine, harnesses wind energy from vehicles on highways and railways, improving safety and reducing wildlife disruption. It also powers highway lights and signs, with an impressive 98% lower climate impact while generating **2kWh** of energy and **having a storage battery**.

This innovation offers localized energy consumption, cost-effective distribution, and adaptability to various climates, making it a solution for environmental and energy challenges, particularly in off-grid residential areas. **ENLIL** is the result of international collaborations, addressing both economic and environmental concerns with its versatile "**plug and play**" design.

Feasibility and Advantages in Kenya

Enhanced Energy Access: ENLIL offers off-grid areas in Kenya reliable energy access, fostering economic development and improved living conditions.

Economic Opportunities: The project creates job prospects and reduces transmission losses, potentially lowering energy costs for consumers and businesses.

Climate-Resilient Infrastructure: ENLIL's adaptability to various climates ensures consistent energy generation, enhancing infrastructure reliability in Kenya.

Lower Carbon Emissions: ENLIL's 98% lower climate impact supports Kenya's environmental sustainability goals to reducing carbon emissions.

79 BIN 656 ağaç ve fidan dikti. BÜYÜKSI 34 TH 295

Projections Timeline: Solar PV & Wind Turbine

Implementation: Solution for Electricity Crisis

Implementation Timeline

Phase 1: Establishing a Unified Vision and Tas Force (2023-2025)	Phase 2: Initial Electrification and Renewable Energy Projects (2025-2030)	Phase 3: Full Transition to Private Sector and Future Expansion (2030-2033)
 Year 2023-2024: Establish the Kenyan Energy Transition Organization (KETO) as an independent entity responsible for coordinating the entire energy sector in Kenya. Ensur- clear ownership and responsibilities for the sector aligning with national sustainable development and climate targets. Year 2024-2025: Set up a permanent planning proces under KETO to optimize project execution and resource utilization. Develop a comprehensive energy transition strategy in collaboration with stakeholders, including private sector companies, NGOs, and international donors 	 Year 2025-2026: Begin implementing renewable energy projects, including solar PV with storage batteries and ENLIL turbines. Initial focus on powering public infrastructure such as highway lamps and signs, and select community centers. Year 2027-2028: Expand renewable energy projects to off-grid residential areas, targeting a specific number of households. Leverage partnerships with private sector businesses to increase adoption. Year 2029-2030: Continue electrification efforts, with an emphasis on economic feasibility and transitioning toward private sector involvement. Reevaluate and revise targets based on audit reports. 	 Year 2030-2031: Accelerate community outreach and electrification marketing, promoting a shift to the private sector for distribution and implementation. Year 2031-2032: Complete the transfer of implementation to the private sector, ensuring widespread access to renewable energy technologies. Year 2032-2033: Explore the potential distribution of electric cooking stoves to households and promote the growth of a healthy renewables private sector.

Stakeholders: Kenyan Government, Kenyan Energy Transition Organization (KETO), Private Sector Energy Companies, International Donors (World Bank, IMF), Non-Governmental Organizations (NGOs), National Renewable Energy Laboratory (NREL), Local Communities

Year 2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	
Formation of Kenyan Energy Transition											
Organization Defining Clear Ownership and											
Responsibilities											
Setting Up a Permanent Planning Process											
Financial Strategy for Sustainable Growth											
Launching Renewable Energy Initiatives											
Expanding Electrification to Off-Grid Areas											
Continuous Evaluation and Adaptation											
Accelerating Community Outreach and											
Marketing											
Complete Shift to Private Sector											
Implementation								-			
Exploring New Energy Avenues for the Future											

Implementation: Solution for Electricity Crisis

Financial Plan Cooking Fuel Crisis Kenya

Biogas: Assumptions and Financial Roadmap

- Number of People per Household: 5
- Biogas Required per Household: 1.5-2 m³/day
- Selling Price to Consumer: US\$ 0.030/m³
- O&M cost (% fixed capital cost): 4
- Inflation (%): 2

Year	Government Allocation (in millions of USD)	Year	Government Allocation (in millions of USD)
1	\$10	6	\$12
2	\$2	7	\$5
3	\$15	8	\$0 (assumed revenue generation)
4	\$3	9	\$0 (assumed financial self- sufficiency)
5	\$10	10	\$5

Funding: Cooking Fuel Solution

Financial Plan Electricity Crisis Kenya

Public Private Partnership Model: Solar PV & Wind Turbine

Advantages of PPP vs. Purely Public Financing

- **Risk Sharing:** PPPs distribute financial risks between the public and private sectors, reducing the burden on the government. If a project faces unforeseen issues or cost overruns, both parties share the responsibility.
- **Efficiency and Innovation:** Private sector involvement often brings greater efficiency and innovation to project execution. Companies have a profit incentive to optimize operations and reduce costs.
- **On-Time and On-Budget Delivery:** PPPs tend to have better records of completing projects on time and within budget due to private sector accountability.

Advantages of PPP vs. Grant Financing

- **Cost Recovery:** PPPs can generate revenue through user fees, making them self-sustainable in the long term. Grant financing may not achieve this level of financial independence.
- **Scale:** PPPs can typically undertake larger and more complex projects compared to grant financing, which often focuses on smaller initiatives.
- **Stakeholder Engagement:** PPPs encourage private sector engagement and expertise, bringing a wider range of skills and knowledge to the project.

Advantages of PPP vs. Public-Private Joint Ventures

- **Risk Distribution:** PPPs have more defined risk-sharing mechanisms, providing clear guidelines for risk allocation. Joint ventures might face ambiguity in responsibilities.
- **Contractual Structure:** PPPs use robust and detailed contracts that outline each party's responsibilities and obligations, reducing the likelihood of disputes.
- **Accountability:** PPPs often involve performance-based payment structures, ensuring that the private sector delivers results or risks financial penalties.

Advantages of PPP vs. Public-Private Equity Models

- **Reduced Capital Outlay:** PPPs often require lower upfront government capital investment, making them more attractive for governments with limited budgets.
- **Infrastructure Ownership:** Governments often retain ownership or control of the infrastructure in PPPs, ensuring public interests are preserved.
- **Transfer of Expertise:** PPPs allow governments to benefit from the private sector's expertise in project development, operation, and maintenance.

Funding: Electricity Solution

Solar & Wind Energy: Assumptions and Financial Roadmap

Funding: Electricity Solution

Final Budget Break-Up

Combined Financial Plan

Financial Plans Takeaways:

Solar PV and ENLIL Wind Turbines:

- Investment: \$30 million (Years 1-2)
- Reinvestment: \$5 million (Year 7)
- Recouped: Expects revenue generation in Year
 7

Biogas:

- Investment: \$12 million (Years 1-2)
- Reinvestment: \$5 million (Year 10)
- Recouped: Aims for \$8 million income in Year

Total Budget: 300,000 Million US\$

Funding: Total Budget Distribution

Monetization: Renewable Energy Certificates

Renewable Energy Certificates

Definition: Renewable Energy Certificates (RECs), also known as Renewable Energy Credits or by other names like Tradable Renewable Certificates (TRCs) and Green Tags, are **tradable, non-tangible certifications** that represent ownership of **one MWh** of electricity generated from a renewable source. RECs are a powerful tool in promoting the adoption of renewable energy, as they can be **traded in the commercial market for profit.**

According to a Facts and Factors report, the global renewable energy certificate market reached **\$13.65 billion** in 2021 and is expected to surge to approximately **\$111 billion** by **2030**, reflecting a CAGR of about 27.22% from 2022 to 2030.

Implementation Timeline & Revenue

2023-2028: Establishing the Foundation:

- 1. 2023-2024: Establish REC regulatory framework, develop a national registry, promote renewables with incentives, and raise REC awareness.
- **2. 2025-2026:** Implement grid integration, forge international partnerships, and commence domestic and international REC sales.
- **3. 2027-2028:** Evaluate progress, fine-tune regulations, sustain support for renewables, emphasize job creation, target 5% energy generation as RECs by 2028.

2029-2033: Scaling Up and Generating Revenue

- **1. 2029-2030:** Expand rural electrification and promote green energy. Encourage business investment in renewables to boost REC supply.
- **2. 2031-2032:** Collaborate with international partners for market expansion and aim for 10% of energy generation as RECs by the end of 2032.
- **3. 2033:** Assess progress and make necessary REC program adjustments. Target 20% of energy generation as RECs by year-end 2033. Calculate cumulative revenue from REC sales, accounting for market growth and pricing trends.

2034-2050: Expanding the Impact

- 2034-2040: Enhance grid integration for increased renewable energy capacity. Promote job creation and invest in renewable energy projects. Aim to reach a milestone of 50% of total energy generation sold as RECs by the close of 2040.
- 2. 2041 to 2050: Continue to expand REC sales and improve energy access programs. Set a long-term objective of achieving 70% of total energy generation sold as RECs by the end of 2050.

 Starting Point: We'll start with an assumed annual revenue figure for 2023 based on the information provided, which mentions that the global REC market size was valued at \$9.3 billion in 2020.

- 2. Annual Growth Rate: We'll assume a constant annual growth rate based on the projected CAGR of 27.2% from 2021 to 2030.
- **3. Market Share:** We'll assume Kenya captures a small percentage of the global market, which will grow proportionally over time.
- **4. REC Price:** We'll assume an average REC price of \$1 per REC for simplicity.
- **5. No Consideration of Market Fluctuations:** This estimate does not consider market fluctuations, policy changes, or any unexpected factors that may affect the REC market.

Assumptions

Innovation: Renewable Energy Certificates Implementation

Utilization of Revenue From RECs

Rural Electrification & Energy Access

- **Mini-Grids:** Establish mini-grids and off-grid solutions in remote areas to provide reliable electricity to off-grid communities.
- Last-Mile Connectivity: Extend the grid's reach to the last mile, ensuring that even the most isolated villages have access to clean energy.

5 Environmental Conservation & Sustainability

- **Reforestation Projects:** Support reforestation efforts to sequester carbon and enhance local biodiversity.
- Waste Management: Implement sustainable waste management practices to reduce environmental impact.

2 Renewable Energy Projects & Infrastructure

- **Solar and Wind Farms:** Invest in large-scale solar and wind farms, increasing clean energy generation.
- Hydroelectric Facilities: Develop hydroelectric power plants harnessing the potential of local water resources.

6 Education, Training, & Awareness

- **Vocational Training:** Establish vocational training programs to equip individuals with the skills needed for jobs in the renewable energy sector.
 - Public Awareness Campaigns: Conduct awareness campaigns to educate communities about the benefits of renewable energy and encourage sustainable practices.

3 Job Creation & Workforce Development

- Skilled Workforce: Train and educate workers in renewable energy technologies, creating job opportunities in installation, maintenance, and operation.
- ManufacturingandSupplyChain:Promotelocalmanufacturingofrenewableenergycomponents,fosteringemploymentinthesupplychain.chain.supply

4 Grid Modernization & Enhancement

- Smart Grid Technologies: Implement smart grid solutions to optimize energy distribution and manage intermittent renewable energy sources effectively.
- **Energy Storage:** Invest in energy storage systems to balance supply and demand, improving grid stability.

7 Energy Efficiency & Conservation

- Building Retrofits: Retrofit public buildings and private homes for energy efficiency, reducing energy consumption.
- TransportationInitiatives:Promoteenergy-efficienttransportationmethods,includingpublictransitelectricvehicles.

8 Research & Innovation

- Clean Energy Research Centers: Support research centers focused on developing cuttingedge clean energy technologies.
- **Start-up Incubators:** Foster innovation by funding start-up incubators that encourage entrepreneurs to create solutions for the renewable energy sector.

Innovation: Renewable Energy Certificates Revenue Utilization

Impact Analysis

Impact Through SDGs & Various Sectors

Promoting renewable energy and biogas access reduces poverty and improves livelihoods.

Improved energy access empowers women in various aspects of their lives.

Enhanced energy access reduces inequalities, benefiting marginalized communities.

Enhanced energy access boosts food production and distribution, enhancing food security.

The plan promotes clean energy sources, aligning with this goal.

> SUSTAINABLE CITIES AND COMMUNITIES

Renewable energy

contributes to

sustainable urban

development.

Infrastructure development creates jobs and spurs economic growth..

3 GOOD HEALTH AND WELL-BEING

Renewable energy

supports health

services, especially in

rural areas.

4 QUALITY EDUCATION

Reliable enerau

enhances education

access, fosterina

better learning

environments.

INDUSTRY, INNOVATION

AND INFRASTRUCTUR

The plan encourages responsible energy practices.

Promoting clean energy and reducing emissions supports climate action.

Sector Wise Impact

Health

Transitioning to clean cooking improves human health by reducing indoor air pollution, lowering the risk of respiratory diseases.

Jobs

The clean cooking sector offers job opportunities, especially with enhanced compensation and retention efforts.

Biodiversity High biomass energy use

energy use pressures indigenous forests, requiring sustainable forest management.

Time Savings

Clean cooking solutions save time on fuel collection and cooking, benefiting women who spend less time collecting fuel.

Fuel Savings

Cleaner fuels reduce household expenditures, potentially decreasing costs by 20%-50% by 2030 and 40%-60% by 2050.

Gender Equality

Clean cooking empowers women by reducing their domestic workload.

Impact Analysis

Comparative Analysis Kenya-Bangladesh Solution

Feasibility : Clean Cooking Fuels Solution

Independent Entity Establishment Creating such an entity is viable in Bangladesh with existing examples like SREDA.	Funding Through Revenue, Grants, Loans Securing funds through these means is achievable in Bangladesh.	LPG Distribution Via Boda Bodas: Using motorcycles for LPG is practical in Bangladesh, where they're common.	Bioethanol Production And Distribution Establishing bioethanol production using local feedstocks is doable in Bangladesh.	LPG Distribution While using boda bodas for LPG distribution may work in some urban areas of Bangladesh, it may face challenges in densely populated cities like Dhaka, where traffic congestion is a major issue. Alternative distribution methods may be needed.	Biogas Implementation The success of biogas systems in Kenya may not directly translate to Bangladesh, as local farming practices and waste management differ. Customized education and outreach programs would be necessary.
Biogas Systems In Rural Areas Promoting biogas systems with agricultural waste is workable in Bangladesh.	Phasing Out Solid Biomass For Cooking Phasing out solid biomass is achievable in Bangladesh, like in Kenya.	Cost-effective, Affordable Solutions Implementin g such solutions is possible in Bangladesh, considering income levels.	Clean, Sustainable Fuels Introducing clean fuels like bioethanol is possible in Bangladesh.	Economic ConditionsBangladesh has a different economic landscape than Kenya, and the affordability of certain solutions might need to be further tailored to local income levels.	Regulatory Framework Government policies and regulations in Bangladesh may differ from those in Kenya, which could impact the ease of implementation. Local regulatory alignment would be essential.

Comparative Analysis: Feasibility of Clean Cooking Fuels Solution

Feasibility : Electrification Solution

Independent Entity Establishment	Project Optimization	Renewable Energy Projects	Off-Grid Expansion
Creating such an entity is viable in Bangladesh with existing examples like SREDA.	Implementing a permanent planning process for optimization is feasible.	Implementing solar PV and wind projects is viable.	Expanding to off-grid areas is feasible, addressing rural electrification needs
Private Sector Transition Transitioning to the private sector aligns with ongoing initiatives.	Community Outreach Community outreach for private sector promotion is feasible.	Private Sector Implementation Transferring implementati on to the private sector is feasible, aligning with public-private partnerships.	Electric Cooking Stoves Distribution is feasible but requires consideratio n of local cooking habits.

Solar and Wind Energy Transition

In Kenya, solar and wind may be major renewable sources, but in Bangladesh, these sources are less prominent, making the transition more complex and potentially less costeffective.

ENLIL's Wind Energy Integration

Bangladesh's road network often experiences high congestion, and road conditions can be challenging, making the utilization of wind energy from vehicles less practical in this context.

Biomass Phase-Out

Bangladesh, In many households rely on biomass, such as crop residues and wood, for cooking and heating. Transitioning away from these traditional sources may require alternative solutions tailored to local practices.

Biogas and Biomass Variability:

In Bangladesh, the availability of organic waste for biogas production and the reliance on specific cooking habits may require customized approaches to achieve similar outcomes.

Comparative Analysis: Feasibility of Electrification Solution

References

References and Citations

Problem Overview

- 1. International Renewable Energy Agency (IRENA). "Renewable Energy Market Analysis: Kenya."
- 2. International Renewable Energy Agency (IRENA). "Renewable Energy Market Analysis: Bangladesh."
- 3. Our World in Data. "Access to Electricity."
- 4. Asian Development Bank (ADB). "Energy Sector Overview: Bangladesh."
- 5. Asian Development Bank (ADB). "Kenya: Energy Sector Overview."
- 6. Statista. "Electricity access rate in Kenya."
- 7. Statista. "Electricity access rate in Bangladesh."
- 8. World Bank. "Bangladesh Energy Sector Overview."
- 9. World Bank. "Kenya Energy Sector Overview."
- 10. International Renewable Energy Agency (IRENA). "Off-Grid Renewable Energy Solutions: Global and Regional Status and Trends."

Comparative Analysis

- 1. International Energy Agency (IEA). (2022). "Energy Access Outlook 2022: Achieving universal energy access by 2030." Paris, France: IEA.
- 2. World Bank. (2021). "Bangladesh Country Economic Update: Transforming the Power Sector for a Sustainable Future." Washington, D.C.: World Bank.
- 3. World Bank. (2022). "Kenya Economic Update: Building Back Better Improving Electricity Supply to Support Kenya's Post-Pandemic Recovery." Washington, D.C.: World Bank.
- 4. Asian Development Bank (ADB). (2021). "Electricity Supply and Demand Assessment for Kenya." Manila, Philippines: ADB.
- 5. International Renewable Energy Agency (IRENA). (2022). "Renewable Energy Market Analysis: Bangladesh."
- 6. United Nations Development Programme (UNDP). (2022). "Kenya Access to Clean and Affordable Energy for All."
- 7. The World Bank Group. (2023). "Bangladesh Accelerating Sustainable Energy for All.
- 8. Bangladesh Power Development Board (BPDB). (2022). "Annual Report 2021-2022." Dhaka, Bangladesh: BPDB.
- 9. Kenya Power and Lighting Company (KPLC). (2023). "Annual Report 2022." Nairobi, Kenya: KPLC.
- 10. International Energy Agency (IEA). (2023). "Bangladesh Energy Outlook 2023." Paris, France: IEA.

Cooking Fuel Crisis

- Kimemia, J. W., et al. (2022). "A Review of Biogas as a Sustainable Source of Cooking Energy in Kenya." Journal of Renewable Energy, 2022.
- 2. Kenya Biogas Program. (2022). "Biogas in Kenya: A Pathway to Sustainable Cooking Energy."
- 3. KOKO Networks. (2022). "KOKO Clean Cooking for Kenyan Households
- Waswa, F., et al. (2021). "Plug Flow Digesters for Biogas Production in Kenya: A Review." Energy Procedia, 185, 196-203.
- 5. Muyingo, H., et al. (2023). "Sustainable Bioethanol Production from Cassava by KOKO Company: A Case Study in Kenya." Renewable and Sustainable Energy Reviews, 150, 111502.
- Kipyegon, D. N., et al. (2022). "Enhancing LPG Accessibility through Boda Bodas in Kenya: A Sustainable Cooking Fuel Solution." International Journal of Sustainable Energy and Environmental Research, 11(2), 65-74.

Electricity Crisis

- United Nations Development Programme (UNDP). (2021). "Enhancing Sustainable Energy Access through Solar and Wind Energy in Kenya."
- 2. ENLIL. (2022). "ENLIL Wind Turbines: Clean and Sustainable Energy Solutions."
- Kenya Renewable Energy Association (KEREA). (2022). "Solar Power and Wind Energy for Sustainable Electricity in Kenya."
- International Energy Agency (IEA). (2022). "Solar PV and Wind: The Future of Electricity Generation." Paris, France: IEA.
- 5. Global Green Growth Institute (GGGI). (2023). "Renewable Energy Integration and Energy Storage in Kenya."
- 6. Solar Electric Power Association (SEPA). (2022). "Energy Storage Solutions for Renewable Integration: A Comprehensive Guide." Washington, D.C.: SEPA.

RECs Monetization

- 1. Green Power Partnership. (2021). "Renewable Energy Certificates (RECs)." U.S. Environmental Protection Agency.
- 2. Green-e. (2022). "About Renewable Energy Certificates (RECs)." Center for Resource Solutions.
- Meoli, M., & Tavoni, M. (2018). "Renewable Energy Certificates and Additionality: Quantifying the Impact of Wind and Solar on Fossil Energy Markets." Energy Economics, 72, 548-562.
- 4. Renewable Energy Certificate (REC) Market. (2022). "REC Monetization: Strategies and Challenges." Energy Central.
- National Renewable Energy Laboratory (NREL). (2021).
 "Renewable Energy Certificate (REC) Market Trends." U.S. Department of Energy.

Appendix

Cooking Fuel: Region Classification

	c =		
Region 1 Central This region is characterized by fertile terrain with coffee cultivation, and by mountains and forested highlands. Space heating is required only during the winter in the highlands.	Region 2 Coast This region lies on the Indian Ocean. The main urban center is Mombasa, the 2 nd Kenyan city. While firewood and charcoal are prevalent in rural areas, kerosene is widely used in the cities.	Region 3 & 5 East/North Eastern These regions are arid, hot lands populated mainly by Somali people. Wood is the cooking fuel for almost 90% of people.	la-Nyandarua lb-Nyeri lc-Kirinyaga ld-Murang'a le-Kiambu 2a-Mombasa (city) 2b-Kwale 2c-Kilifi 2d-Tana River 2e-Lamu 2f-TaitaTaveta
Main Fuels Used	Main Fuels Used	Main Fuels Used	Ja-Marsabit Ja-Marsabit Jb-Isiolo Jc-Meru Jd-Tharaka-Nithi Je-Embu Ja-Embu
Wood/Agriresidues,	Wood/ Agriresidues,	Wood/ Agriresidues,	
Charcoal	Charcoal	Charcoal	
Region 4 Nairobi	Region 6 & 8 Nyanza and West	Region 7 Rift Valley	3f-Kitui 3g-Machakos 3h-Makueni
firewood, 10.5% use	Centered around Lake	economic region with	4a-Nairobi City 6b-Kisumu
charcoal, 63% use	Victoria, this region	around 7 million people,	5a-Garissa 6c-Homa Bay
kerosene, and 20% use	grapples with Malaria and	the fertile highlands	5b-Wajir 6d-Migori
LPG, showing disparities	uses smoke to deter	primarily use wood (70%)	5c-Mandera 6e-Kisii
between moderately-	mosquitoes. Clean fuels,	and charcoal (20%) for	6a-Siaya 6f-Nyamira
poor and extremely	subsidized in Kisumu,	cooking, with only 7%	7a-Turkana 7h-Baringo
poor residents in fuel	where less than 3% of	using kerosene, mostly in	7b-West Pokot 7i-Laikipia
choices.	households use kerosene.	urban areas.	7c-Samburu 7j-Nakuru
Main Fuels Used	Main Fuels Used	Main Fuels Used	7d-Trans-Nzoia7k-Narok8a-Kakamega7e-Uasin-Gishu7l-Kajiado8b-Vihiga7f-Elgeyo-Marakwet7m-Kericho8c-Bungoma7g-Nandi7n-Bomet8d-Busia
Wood/ Agriresidues,	Wood/ Agriresidues,	Wood/ Agriresidues,	
Charcoal	Charcoal, LPG	Charcoal, LPG	

Problem Overview

Tł cł

du hi

Comparative Analysis: Cooking Fuel Sources and Stoves

	T	raditiona	al		Transit	ional
				K		
		Wood Fuel		Ch	arcoal	Kerosene
Stove	Three Stone Fire	Firewood Jiko Kisasa	Rocket Mud Stove	Three Stone Fire	Kenya Ceramic Jiko	Kerosene Wick
Accessibility	Abundant and l collectors, althou purchase at le	argely free in gh 20-30% of ri ast some of th	rural areas for ural households eir firewood.	Widely available example, charcoc 50-150 meters of m	e in urban Kenya, for al is accessible within nost homes in Nairobi.	Widely available throughout mass-market neighborhoods at hyper-local distribution points, such as the 1500+ points in Nairobi alone.
Cost of Stove	0	250-500 Ksh	250-500 Ksh	0	500-1000 Ksh	350-1000 Ksh
Cost of Fuel	Smal	bundle: 1,500	Ksh	1 Kilogra	ım: 1600 Ksh	1 Liter: 200 Ksh
Efficiency	20%	28%	20%-28%	12%	20%-50%	35%
Health and Environmenta l Impact	Firewood has ad heart problems, co consequences emissions, hig	verse health el ancer risks) an (significant gre h per capita co	fects (lung and d environmental eenhouse gas onsumption).	Charcoal reduces i is less clean tha Converting we inefficient, emittin kg. 3.3-10 kg fireu charcoal with 30 f	respiratory deaths but n transitional fuels ood to charcoal is ng 450-500g CO2 per uood needed for 1 kg NJ/kg energy content.	Kerosene stoves emit fine particulate matter, posing health risks, including tuberculosis. They also release CO, NOx, and SO2, contributing to air pollution and carrying fire and explosion hazards.
Pollution	High High-I	Noderate H	ligh-Moderate	High I	High-Moderate	Moderate

Biogas: Comparative Analysis of Digesters

Fixed Dome Digester

DISADVANTAGES

- ✓ Medium to high initial cost
- ✓ Difficult to identify leaks
- \checkmark Irreparable/ difficult to maintain cracks
- ✓ Fluctuating gas pressure
- ✓ Skilled labor needed for construction
- \checkmark Masonry is prone to porosity and cracks
- \checkmark Long retention days, 45 days for KENBIM
- \checkmark No indication of gas volume
- ✓ Heavy construction materials, and high transportation cost

Floating Drum Digester

DISADVANTAGES

- ✓ High initial cost
- ✓ Steel drum is expensive and maintenanceintensive
- ✓ Short lifetime of the steel drum (5 years)
- \checkmark Construction is labor intensive
- ✓ Heavy construction materials, and high transportation cost

Plug Flow Digester

DISADVANTAGES

- ✓ Short life of greenhouse tunnel
- ✓ High susceptibility to damage
- ✓ Low gas pressure needs regular control by adding weights.
- $\checkmark~$ End-of-life disposal procedure unknown

Biogas: Utilization with Plug Flow Digester

Design Criteria and Sizing the Plug-Flow Digester

- Location: Within a 91-meter radius of the mix tank.
- Mix Tank: Round, square, or rectangular with a pump for manure transfer.
- Hydraulic Retention Time (HRT): Typically 15-20 days for optimal methane yield.
- **Dimensions:** Depth between 2.4-4.9 meters, width:depth ratio >1 and <2.5, length:width ratio 3.5-5.
- Heat Exchanger: Required for temperature control, with hot water heated by biogas or waste heat.
- Operating Temperature: Mesophilic range, around 37-40°C.
- Insulation: Surface insulation to minimize heat loss.
- Construction Materials: Lined trench or reinforced concrete/block tank.
- **Methane Recovery System:** Similar to complete mix digesters, with appropriate covers.

Operation and Maintenance of Plug-Flow Digesters

- **Mix Tank Operation:** Collect manure daily or every other day. Adjust total solids mixture with dilution water if necessary. Release mixed manure into the digester via a gravity gate or pump.
- **Mix Tank Maintenance:** Normal maintenance for pumps and mixers as per manufacturers' recommendations. Occasional cleaning to remove debris like sand, gravel, steel, and wood.
- **Plug-Flow Digester Operation:** Feed from the mix tank daily or every other day. Daily check of heating and mixing system operation.
- **Plug-Flow Digester Maintenance:** Daily temperature check. Weekly checks for effluent outlet and gas pressure relief. Lubricate the heat exchanger pump per the manufacturer's recommendations. Sludge removal every 8 to 10 years, if needed.

Biogas: Haubenschild Farms Case Study

When the digester was started, it was processing manure from about 425 dairy cows, which was about half of its total design capacity of 1000 cows. In 2000, Haubenschild Farms built a second free stall barn and has expanded to a current size of about 750 cows. Since startup in the fall of 1999, the biogas output of the digester steadily increased to about 65,000 cubic feet by May 2000. Currently, more biogas is being produced than can be used by the engine-generator, so it is hard to estimate exactly how much biogas is being produced. The Haubenschilds are considering adding generation capacity to utilize the excess biogas. Approximately 70,000 cubic feet/day of biogas is used by the engine generator; the rest is currently flared. With 425 cows, the biogas output per cow was almost twice projections – with 750 cows, the output per cow has come down somewhat to about 40 percent above projections. Haubenschild's cows are producing about 50 percent more manure per cow than the digester was engineered for, which somewhat explains the high biogas production per cow.

The sale of the electricity generated is an important benefit of the project. Before the digester was built, Haubenschild Farms entered into a power purchase contract proposed by the local electric cooperative, East Central Energy, who greeted the project with enthusiasm and offered Haubenschild Farms a very favorable contract. Since the expansion of the milking herd size from 425 to about 750 cows in the summer of 2000, the digester has been producing enough electricity to provide all the electric needs on-farm, plus enough surplus electricity to power about 75 additional homes.

Construction and operation of the Haubenschild Farms project has offered several key lessons for future digesters:

- Payback of 5 years on investment is possible
- A good time to install a digester is when changing or expanding operations
- Electric utility cooperation is important
- Active management is crucial for stable digester and engine operation
- Digester design and engineering expertise is key
- There are barriers to financing digester systems
- Cooperative agency participation reduces the barriers to a project's success
- Manure collection method and collection frequency are important.

Biogas: Cost Analysis

2.15261.579.421.54Number of Cows Cows per Day (kg)Volume of Biogas Digester (m³)Estimated Daily Cooking Demand (m²/day)Amount of Biogas per Day (m³)Quantity of Cow Dung (kg/day)Quantity of Cow Dung Cow Dung (kg/day)Quantity of Cow Dung (kg/day)Quantity of Cow Dung (kg/day)Quantity of Cow Dung (L/day)163002.150.20.350.3242652le 6. Annual operating cost for the biogas digester.Table 7. Cost calculation of 2.15 m³ biogas digester.Table 7. Cost calculation of 2.15 m³ biogas digester.Cost ComponentsCost (USD)ParametersValuesUnit	Volume of B Digester (1	iogas Amo m ³)	unt of Dung Fed Daily (kg)	Expected per Da	Gas Yield y (m ³)	Expected Energy Generated (kWh)	Cost) Expec	of Energy ted (USD)
Number of Cows ConsideredQuantity of Cow Dung per Day (kg)Volume of Biogas Digester (m³)Estimated Daily Cooking Demand (m²/day)Amount of Biogas per Day (m³)Amount of Electricity Generated (kWh)Quantity of Quantity of (kg/day)Quantity of Water A (L/day)163002.150.20.350.3242652le 6. Annual operating cost for the biogas digester.Image: Cost (USD)Table 7. Cost calculation of 2.15 m³ biogas digester.Table 7. Cost calculation of 2.15 m³ biogas digester.	2.15		26	1.5	57	9.42		1.54
163002.150.20.350.3242652Defe 6. Annual operating cost for the biogas digester.Cost ComponentsCost (USD)	Number of Cows Considered	Quantity of Cow Dung per Day (kg)	Volume of Biogas Digester (m ³)	Estimated Daily Cooking Demand (m ² /day)	Amount of Biogas per Day (m ³)	Amount of Electricity Generated (kWh)	Quantity of Cow Dung (kg/day)	Quantity o Water Adde (L/day)
Ie 6. Annual operating cost for the biogas digester. Table 7. Cost calculation of 2.15 m ³ biogas digester. Cost Components Cost (USD) Parameters Values Unit	16	300	2.15	0.2	0.35	0.324	26	52
Cost ComponentsCost (USD)ParametersValuesUnit	le 6. Annual opera	ating cost for the biog	as digester.		Table 7. C	Cost calculation of 2.15 m	n ³ biogas digester.	
	Cost C	Components	Cost (USD)			Parameters	Values	Units

Cost Components	Cost (USD)	
Additional cost of waste (maize silage and inoculum etc.)	63.88	
Cost of water	N/A	
Cost of electricity	35.13	
Cost of maintenance and repair	324.68	
Total	423.70	

Parameters	Values	Units
Volume of biogas digester	2.15	m ³
Annual biogas production	140	m ³
LPG equivalent value of biogas	60	kg
Investment/fixed cost	1623.41	USD
Annual operating cost	423.70	USD

Solar and Wind Energy Potential in Kenya

Thank You!