AKA Energy Switch Energy Competition

Ecuador & Guatemala

Members

Anne Buenaventura Canada Kennedy Foster Canada Ana Laura Espinosa Garza

Canada

Mentor Bryn Davies

www.canadiannaturephotographer.com

Executive Summary

Problem Overview	Lack of infrastructure or connection to the grid in remote areas affects limits reliable access to electricity and safe cooking fuels in rural areas. Overreliance on hydropower leaves both grids vulnerable to changes in water resources. Lack of expertise, manpower, and political stability make it difficult to diversify, despite abundant resources.		
Electrification Solution	 Diversifying the current through PV Farms, Wind Farms & Large-Scale Geothermal projects 		
Clean Cooking Solution	 Securing the LPG supply chain through RFID & transitioning LPG pricing Implementing alternative cooking fuel pilot projects 		
Impact & Financials	 Increasing the renewable energy supply by 810MW Providing enough additional energy to power 2.95 million households Total costs accumulate to \$4.49 B 		
 Transferability & Would need focus on government policy and relations development with the Indigenous population to build new projects Implementable are the LPG supply chain and smaller scale off-grid projects 			
Solution			

Energy Landscape in Ecuador

Hydropower Dependency and Oil Consumption

- **Hydropower Reliance:** 74.6% of electricity generation comes from hydropower, with droughts impacting hydropower generation.
- **Oil as Dominant Energy Source:** 82% of Ecuador's total energy consumption is from oil, and 77% of transportation energy relies on oil products.
- 6th in Latin America for refined oil production.
- **Unreliable Access in Rural Areas:** Only 3 out of 20 electricity distribution companies meet national standards for service quality.
- **Environmental Degradation:** Ecuador lost 2.6 million hectares of forest between 2000 2020, partly due to oil and mineral extraction.
- **Political Instability:** Between 2010 2020, Ecuador saw 5 changes in government leadership, impacting energy policy consistency.

Hydropower and Rising Fossil Fuel Use

- **Hydropower Reliance:** Hydropower accounts for 52.6% of electricity generation, vulnerable to droughts.
- Increase in Fossil Fuels: Coal and oil have risen sharply, increasing CO2 emissions. Coal use increased by 153% from 2000 to 2022.
- Highest electricity prices in Latin America (USD 0.298/kWh).
- **Corruption** has hindered the progress of energy projects and worsened environmental damage.

Energy Mix and Resource Utilization

Ecuador

Guatemala

Hydropower (74.6%): Key electricity source due to abundant resources and established infrastructure, but highly vulnerable to droughts.

Hydropower (52.6%): Main electricity source due to favorable geography, but vulnerable to climate variability (droughts).

Oil (82% of total energy consumption): Dominant energy source due to Ecuador's oil reserves. Oil is used extensively in transportation and industry.

Natural Gas: Minimal use (0.02% of the energy mix) due to limited domestic reserves and high import costs.

Nuclear: Not considered due to high costs, lack of infrastructure, and limited domestic expertise.

Other Renewables: Vast solar and wind potential. Development is hindered by political instability and slow investment.

Biofuels (26%): Widely used in rural areas and for industrial purposes but contributes to CO2 emissions and deforestation.

Coal (9.5%) and Oil (5.3%): Used to meet energy demand during dry periods, but reliance on imports raises costs and emissions.

Natural Gas: Not part of the current energy mix due to limited infrastructure and supply.

Nuclear: Not feasible due to cost, lack of infrastructure, and safety concerns.

Other Renewables: Significant solar, wind, and geothermal potential, but underinvestment and lack of political focus have slowed their development.

Energy Accessibility & Affordability

Electricity

Ecuador	Guatem
97% access in urban	90% access in
areas, 88% in rural areas; rural	areas, 70% in ruareas; rural and
communities face	indigenous
infrastructure gaps and	communities a
frequent outages.	disproportiona affected.

nala urban rural are ately

Industry & Transportation

Ecuador	Guatemala
Oil dominates,	Heavy reliance on
supplying 77% of total	biofuels and oil; rural
energy consumption,	areas have poor access
and 51% of oil demand	to energy for industry
is for transportation.	and agricultural
	production.

Affordability

	Ecuador	Guatemala
mala	Oil dominates, supplying 77% of total	High electricity price driven by dependen
he as access ting fuels; iomass d), leading ution and	energy consumption, and 51% of oil demand is for transportation.	on imported fuels ar inefficient infrastructure, make energy unaffordable many, especially in r areas, exacerbating energy poverty across the country.

ectricity prices, dependence rted fuels and nt icture, make inaffordable for specially in rural xacerbating overty across ntry.

Cooking

Ecuador	Guatemal
Predominant reliance on LPG (91% of total households) but with heavy government subsidies, and rural areas still use firewood.	Only 48% of the population has act to clean cooking fu 61% rely on bioma (e.g., firewood), lea to indoor pollution health risks.

13% and 76% of Ecuador and Guatemala respectively are Energy Poor.

Environmental Impact

Ecuador

- *Hydropower*: Provides low-carbon energy that helps mitigate global warming but disrupts ecosystems in the Amazon, displaces communities, and strains water resources during droughts.
- *Oil Extraction*: A major contributor to deforestation, with 2.6 million hectares lost between 2000-2020, causing soil degradation, water contamination, and increased CO2 emissions.

Guatemala

- *Hydropower*: Dominates electricity generation with lowcarbon emissions, but droughts cause instability, leading to increased reliance on coal and oil, which harm the atmosphere and disrupt ecosystems.
- **Coal Use**: A 153% increase in coal consumption since 2000 has significantly raised CO2 emissions and caused water contamination from mining and ash disposal.
- **Biofuels**: While renewable, large-scale biofuel production contributes to deforestation and emissions, reducing their net environmental benefits.

Quality, Reliability, Safety, & Security

Ecuador

RELIABILITY

ENERGY SERVICES ARE INCONSISTENT, PARTICULARLY IN RURAL AREAS, WITH FREQUENT BLACKOUTS DUE TO HYDROPOWER'S VULNERABILITY TO DROUGHTS. WHILE URBAN CENTERS HAVE MORE RELIABLE GRIDS, RURAL INFRASTRUCTURE REMAINS UNDERDEVELOPED.

SAFETY

URBAN AREAS HAVE MODERNIZED INFRASTRUCTURE, BUT RURAL REGIONS FACE SAFETY RISKS FROM OUTDATED SYSTEMS. LPG IS WIDELY USED FOR COOKING, BUT POOR INFRASTRUCTURE MAINTENANCE LEADS TO LEAKS, AND MANY RURAL HOUSEHOLDS STILL RELY ON FIREWOOD, CONTRIBUTING TO INDOOR AIR POLLUTION AND RELATED HEALTH PROBLEMS.

ENERGY EFFICIENCY

X

ECUADOR HAS MADE MINIMAL PROGRESS IN ENERGY EFFICIENCY INITIATIVES. EFFORTS TO IMPLEMENT SMART METERING AND ENERGY-SAVING PROGRAMS ARE LIMITED, WITH MUCH OF THE ENERGY SECTOR STILL RELIANT ON INEFFICIENT OIL-BASED SYSTEMS. INDUSTRIAL AND TRANSPORTATION SECTORS CONSUME LARGE AMOUNTS OF ENERGY, WITH FEW PROGRAMS PROMOTING ENERGY-EFFICIENT TECHNOLOGIES OR RENEWABLE ENERGY INTEGRATION.

SECURITY

ECUADOR'S ENERGY INFRASTRUCTURE IS VULNERABLE TO NATURAL DISASTERS SUCH AS EARTHQUAKES AND DROUGHTS, WHICH AFFECT HYDROPOWER GENERATION. SECURITY AGAINST ATTACKS OR CYBER DISRUPTIONS IS LIMITED, WITH A LACK OF SUBSTANTIAL MEASURES IN PLACE TO SAFEGUARD CRITICAL ENERGY INFRASTRUCTURE FROM MALICIOUS THREATS OR DISRUPTIONS. CROSS-BORDER ENERGY TRADING WITH NEIGHBORING COUNTRIES PROVIDES SOME ENERGY STABILITY, BUT THE LACK OF DOMESTIC RESILIENCE REMAINS A KEY CONCERN.

ENERGY SERVICES ARE UNSTABLE, ESPECIALLY IN RURAL AREAS, WITH FREQUENT OUTAGES DUE TO HYDROPOWER'S DEPENDENCE ON SEASONAL WATER AVAILABILITY. URBAN AREAS ARE SOMEWHAT MORE RELIABLE BUT STILL EXPERIENCE DISRUPTIONS, PARTICULARLY DURING DROUGHTS OR ADVERSE WEATHER CONDITIONS.

RELIABILITY

Guatemala

SAFETY

RURAL AREAS HEAVILY DEPEND ON BIOMASS (FIREWOOD) FOR COOKING, LEADING TO INDOOR AIR POLLUTION AND SIGNIFICANT HEALTH RISKS SUCH AS RESPIRATORY ILLNESSES. ADDITIONALLY, GUATEMALA'S ENERGY INFRASTRUCTURE IS OUTDATED, INCREASING SAFETY CONCERNS IN RURAL REGIONS, WHERE ELECTRICITY SYSTEMS LACK PROPER MAINTENANCE.

ENERGY EFFICIENCY

GUATEMALA HAS MADE LIMITED ADVANCEMENTS IN ENERGY EFFICIENCY. MOST RURAL AREAS ARE UNDERSERVED BY EFFICIENCY PROGRAMS, AND SMART METERING OR ENERGY-EFFICIENT TECHNOLOGIES ARE RARELY IMPLEMENTED. THERE IS A LACK OF GOVERNMENT-LED INITIATIVES TO PROMOTE ENERGY-SAVING PRACTICES IN BOTH RESIDENTIAL AND INDUSTRIAL SECTORS. INVESTMENT IN MODERNIZING INFRASTRUCTURE IS SLOW, AND RENEWABLE ENERGY INTEGRATION REMAINS UNDERDEVELOPED DESPITE THE COUNTRY'S SOLAR AND WIND POTENTIAL.

SECURITY

GUATEMALA'S ENERGY INFRASTRUCTURE IS HIGHLY VULNERABLE TO NATURAL DISASTERS, ESPECIALLY DROUGHTS AND FLOODING, WHICH IMPACT HYDROPOWER. SECURITY MEASURES TO PROTECT THE INFRASTRUCTURE FROM ATTACKS OR CYBER THREATS ARE UNDERDEVELOPED, LEAVING KEY ASSETS EXPOSED. POLITICAL INSTABILITY AND CORRUPTION IN THE ENERGY SECTOR (E.G., THE JAGUAR ENERGY SCANDAL) HAVE DELAYED EFFORTS TO REINFORCE INFRASTRUCTURE, FURTHER WEAKENING THE COUNTRY'S ENERGY SECURITY. ADDITIONALLY, RURAL ENERGY INFRASTRUCTURE IS NOT ADEQUATELY GUARDED AGAINST THEFT OR SABOTAGE, EXACERBATING THE RISK OF DISRUPTIONS.

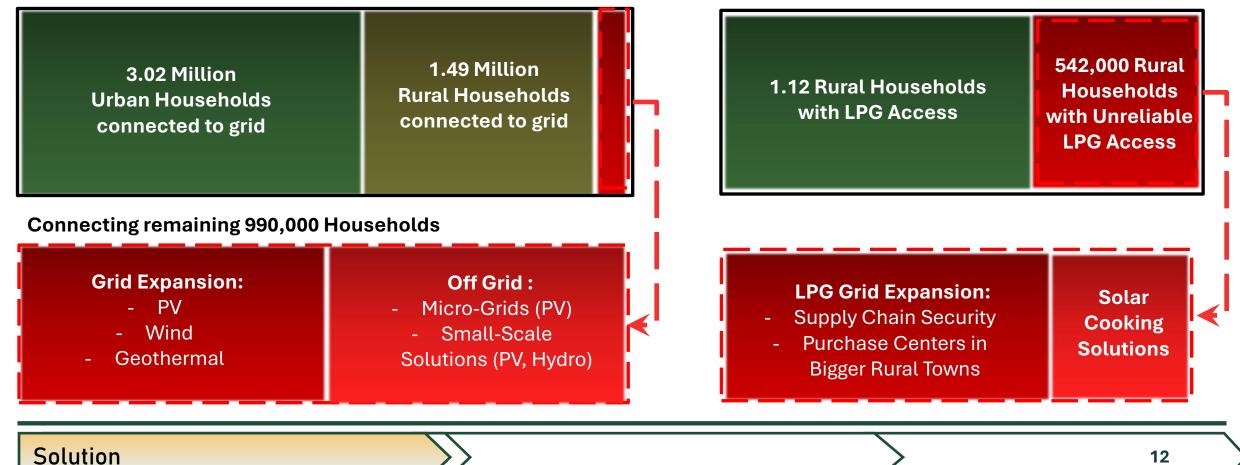
Potential Roadblocks to Addressing Energy Poverty

Ecuador

- **Political Instability:** Frequent government changes have stalled long-term energy projects, delaying renewable energy investments.
- **Financial Constraints:** Heavy reliance on oil revenue strains government resources and leaves little room for funding renewable energy projects or modernizing infrastructure.
- **Infrastructure**: Rural areas suffer from outdated and underdeveloped infrastructure, resulting in unreliable energy access and frequent blackouts.
- **Supply Chain Issues:** Import dependency for energy technologies (solar panels, wind turbines) slows renewable energy development.
- **Employment & Skills Gap:** Limited availability of skilled workers in the energy sector, particularly for renewable energy projects and infrastructure maintenance.

Guatemala

- **Political Instability & Corruption:** Corruption scandals (Jaguar Energy) and political instability have delayed essential infrastructure improvements.
- **High Energy Costs:** The high cost of electricity (USD 0.298/kWh) makes it difficult to fund new projects and expand access, especially in rural areas.
- **Underdeveloped Infrastructure:** Outdated infrastructure, particularly in rural areas, leads to frequent energy disruptions and inefficient delivery of services.
- Supply Chain & Resource Limits: Limited investment in energy technologies and dependence on imported fuels (coal, oil) create financial bottlenecks.
- Skills Shortage: A shortage of trained professionals and inadequate government support hampers the growth of renewable energy sectors.


Power Ecuador:

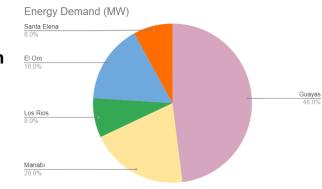
Meeting Electrification Needs Through Diversification

Solution Model

ELECTRIFICATION

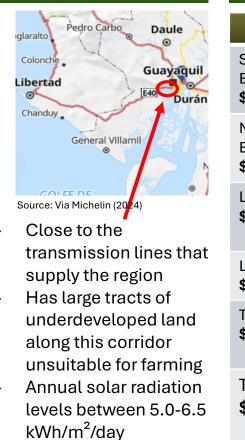
4.77 Million Households with Energy Needs

COOKING


1.65 Million Rural Households with LPG Needs

Power Ecuador – PV Solutions

Completion of Continuing Projects	On-Grid Guayas PV Farm	Off-Grid Galapagos Islands PV Farm	Small Scale Off-Grid Solutions
Completing all continuing projects will provide an additional <i>476.1MW</i> to the grid.	Costa Region has immense untapped PV potential, specifically in the Guayas province. - High solar irradiation	Continuing with Costa Region PV potential - Solar irradiance range from 5.5-6.0 kWh/m^2/day	Developing custom solutions to support hard- to-reach populations: 1. Provide energy to indigenous populations
 Reduce delays by: Streamlining funding Enforcing stricter codes Remain consistent in 	 Vast open space Has pre-existing access to electrical infrastructure/grid-based transmission lines 	Galapagos Islands Energy Demand = 20MW - 97% of the land is a protected national park - Most uninhabited land	with unique energy needs 2. Cost efficient by cutting costs related to grid connection
PV policy	Guayas Energy Demand = 1,200MW	on Santa Cruz, San Cristobal, Isabela, and Floreana	3. Adhere to strict environmental/land regulations


demand for Guayas

Solution

Timeline

Scouting exact location Conducting zoning & compliance checks	 EPC selection, equipment procurement, and start construction Undergo & complete construction Connect the farm to the grid Begin testing and commissioning Operate, maintain, and optimize farm
2025-2028	2029-2035

Financial Breakdown

CAPEX	Other
Solar Panels and	OPEX Cost:
Equipment:	1.5% of CAPEX
\$150 million	\$2.93 million/year
Mounting Structures & Electrical Systems: \$25 million	Transmission Infrastructure: \$20 million
Land Acquisition:	Substation and Transformer:
\$5 million	\$5 million
Labor and Construction:	Connection Fees:
\$15 million	\$1 million
Total CAPEX: \$195 million	Synchronization and Control Systems: \$2 million
Total Cost:	\$ Budget Left:
\$225.93 million	<mark>\$8.27 billion</mark>

	Galapagos Islands			Financial Implications	
Small-		 Developing 4 5MW> PV farms Implemented on rooftops existing infrastructure & 	5MW> PV system: \$30 million	Platform Infrastructure & Equipment: \$27 million	
Scale PV Farms	FERNANDINA ISABELA	 Primarily in Santa Cruz & Floreana Reduces dependence on unreliable diesel solutions 	Battery Storage System: \$40 million	Marine Transmission Cables: \$20 million	
	FLOREANA ESPAÑOLA Source: Hervig, D. (2022)		Labor and Construction: \$14 million	Battery Storage System: \$24 million	
	Coch-Galapagos Migriles	 15MW off-shore aquatic farm Located closest to Isabella Island Connected through power transmission marine cables Storing energy in batteries to 		Labor & Installation: \$18 million	
Aquatic PV	Galapagos Marine Reserve		5MW> Total: \$84 million	Aquatic Total: \$89 million	
Farm	Ecuador's Insular EEZ - Source: Galapagos Conservation Trust (2021)	supplement energy demand Reduces the overall energy need for the Galapagos Islands from 25MW to 10MW Utilizes 100 hectares of the EEZ	Combined Total: \$173 million	\$ Budget Left \$8.10 billion	

Amazon Region (Sucumbios, Napo, Morona Santiago, and Zamora Chinchipe)

 Pilot PV system: Solution Filot PV system: \$30 million **\$7.5 million per farms Farms 	Expansion PV system: \$157.5 million
 Providing rural communities with their own grid Infrastructure is currently over reliant on oil and/or hydroelectric Pilot Battery Storage System: \$40 million **\$10 million per 	Expanded Battery Storage System: \$210 million
% of Rural Population Lacking Reliable Energy	
30% Labor and	Labor and
2 Napo Construction: \$14 million	Construction: \$73.5 million
S Orellana	
Pastaza Pilot Total: \$84 million	Expansion Total: \$441 million
Santiago	Q-11 million
Cuence 6 Zamora 10% Chinchipe	
Provinces in the Amazon	\$ Budget Left \$7.58 billion
Sucumbios Napo Morona Santiago Zamora Chinchipe Source: The Water Bearers (2024)	

Program Implementation

16

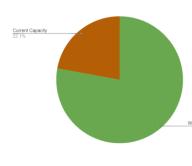
Financial Implications

Galapagos	Project Initiation	Groundwork & Initial Development	Ins	tallation
Small- Scale PV Farms	 Feasibility, site selection & license procurement 	- Site preparation & supplier contracts finalization	 Installation and testing Development & implementation of stora 	age batteries
Amazon	Project Initiation	Consultation with Communities	Groundwork & Initial Development	Installation
Small- Scale PV Farms	- Feasibility, site selection & license procurement	 Understanding energy needs of rural populations 	- Site preparation & supplier contracts finalization	 Installation and testing Development & implementation of storage batteries
	Project Initiation	Groundwork & Initial Development	Aquatic Installation	Connecting to Islands
Aquatic PV Farm	- Feasibility, site selection & license procurement	- Site preparation & supplier contracts finalization	 Installation and testing of aquatic PV panels Initial development of marine cables 	 Potential for expansion to all remaining islands through marine cables
	2025	2026-2028	2029-2032	2029-2032
Program I	mplementation			17

e,

Power Ecuador – On-Grid Wind

Solution

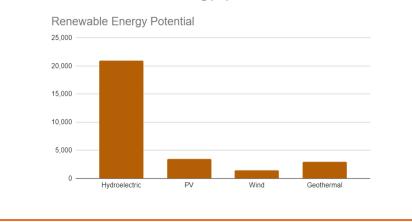

- Develop two
 50MW grid
 connected
 farms
 - 1 in Manta
 - 1 in Jama

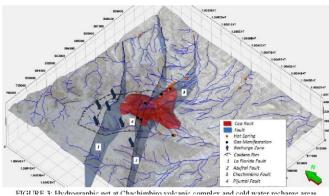
Timeline

2025-2028		2029-2035
compliance checks	-	Begin testing and commissioning Operate, maintain, and optimize
zoning &	-	Connect the farm to the grid
Scouting exact location Conducting	-	EPC selection, equipment procurement, and start construction Undergo & complete construction
		FDC coloction any innext and support

 both have strong and consistent winds and large tracts on undeveloped land
 good connections to the national grid
 their wind resources are currently being underutilized

Financial Breakdown


	CAPEX	Other
	Turbine Costs: \$110 million	Grid Connection Costs: \$100 million
	BoS Costs: \$27.5 million	Operational Costs: \$1 million/year
	Land Acquisition: \$225,000	Zoning & Permits: \$1 million
	Labor and Construction: \$12 million	
	Total CAPEX: \$150 million	
I Energy Pot 77.9%	Total Cost: \$252 million	\$ Budget Left: <mark>\$7.32 billion</mark>


Power Ecuador – Geothermal Solutions

Med-Large Scale in Sierra Region

-

- Geothermal energy potential = 3,000MW

Building a 400MW plant in Chachimbiro

Source: Masabanda, P. & Byron, F. (2017)

Grid integration & Plant infrastructure construction: Drilling Geotransmission line turbines, heat exchangers & production & physical development cooling systems injection studies wells 2025 2026-2028 2029-2032 2033-2035 **Program Implementation**

Financial Implications

Exploration: \$80 million **Drilling Wells:** \$250 million Power Plant Construction: \$1 billion Grid Integration & Transmission Lines: \$50 million Licensing & Permitting: \$5 million **Construction Labor Costs:** \$277 million **Operational Costs:** \$15 million/year **Total Cost:** \$1.67 billion **\$ Budget Left:** \$5.65 billion

19

Power Ecuador – Supplemental Education <

Specialized Outreach	 Partnerships with Secretaría de Gestión de Pueblos y Nacionalidades & CONAIE Bringing in outreach personnel from CELCEC 	 Development - Work of Indigenous synchronized Outreach training (6-9 hours weekly) & - Theory & PetroEcudaor regulations 	Development employees are training placed on teams	 Teams scout for communities & survey rural areas to determine: 1. Local needs & energy demand 2. Spend 2 weeks on-field, 2 weeks off-field while developing solutions 3. implement
New Infrastructure Development	 Bringing in geothermal experts from CELCEC Developing partnerships with CELCEC Partnering with trades & engineering schools 	 CELCEC specialists develop knowledge bases on Ecadorian resources Developing school courses & programs 	 Short term conferences, workshops & training with current employees at CNE Trade school & engineering courses begin (2 year programs) 	 Ideation & development of geothermal solutions 1. Scouting land & potential areas for implementation 2. Zoning & environmental 3. Financial budget development
Maintenance & Upkeep	 Developing partnerships with trade schools Accumulating the Ecuadorian maintenance specialists 	 Developing a financial plan to subsidize to subsidize the maintenance programs Maintenance specialists to develop training programs 	 Programs commence 2 year educational programs Can specialize 	 New graduates enter the work field 1. Survey current infrastructure 2. Develop a maintenance plan based on most aged infrastructure 3. Begin maintenance schedule
	2025-2026	2027 2028	2029 2030	2031-2035
Program Im	plementation			20

 $\langle \rangle$

Feeding Ecuador: Reliable LPG Solutions for All

Feeding Ecuador - Solution

Modifications to Current LPG

Cylinder Tracking System

Transition to Market Pricing

- LPG cylinder tracking system to monitor lifetime
- RFID tags to tracks cylinder movements
- Enhancing current regulations & increasing audit frequency

Einancial Implications

r manciat implications				
RFID Tags	\$3 million			
Readers	\$50,000			
Software Integration	\$100,000			
Installation	\$30,000			
Total	\$3.18 million			

- Current Subsidies place heavy burden on national budget
- Transition to market pricing + smart subsidies
- Directly provided to poorest through direct cash transfers or reductions on monthly energy bills
 - 3 tier system
 - Standard
 - Reduced
 - customized

Hybrid Solar Cooking	Η	ly	brid	So	lar	Coo	king	
----------------------	---	----	------	----	-----	-----	------	--

Pilot Program

- Deploying 100,000 hybrid solar cooking units in rural households
- Evaluate impact & scale

Scaling to meet 900,000/1.2 million households without reliable access

Expansion

Financial Implications

Unit Costs	\$10 million	Unit Costs	\$270 million
Installation	\$2 million	Installation	\$67.5 million
Training & Logistics	\$500,000	Training & Logistics	\$36.5 million
Maintenance/5y	\$5 million	Maintenance/5y	\$45 million
Total	\$17.5 million	Total	\$419 million

Cylinder	Project Initiation	Reader Preparation	Software Integration	Installation	Maintenance
Tracking System	- Feasibility & site sweeping	- Acquiring RFID tags	 Development or customization of software to manage the RFID system 	 setting up the RFID readers, integrating the software, and training personnel 	- Fixing/ modifying
Dilat	Project Initiation & Installation	Training			
Pilot Program	 site selection & assessment of infrastructure 	- Educating locals on how to implement the units			
			Project Initiation	& Installation	Further Expansion
Expansion				Training	- Expanding if necessary to
			 site selection & assessment of infrastructure Educating locals on how to implement the units 		remaining population
	2025	2026	2027-2029	2030-2032	🕨 2033 & On
	mplementation				23

Financial Recap

24

Financial Recap

	Power Ecuador	Feeding Ecuador			
PV Solutions	Wind Solutions	Geothermal Solutions	LPG Improvement	Hybrid Solar Cooking	
On-Grid Total Cost: \$225.93 million	Total Cost: \$252 million	Total Cost: \$1.67 billion	Total Cost: \$3.18 million	Total Cost: \$436.5 million	
Galapagos Total Cost: \$89 million	Budget After Costs: \$7.32 billion	Budget After Costs: \$5.65 billion	Budget After Costs: \$5.64 billion	Budget After Costs: \$5.21 billion	
Amazon Total Cost:	Powe	er Ecuador – Supplemental Ed	ucation	COST EFFECTS	
\$525 million	**The subsidies to fund	Budget After ALL Costs:			
Overall Total Cost:	enrollment numbers			\$4.01 billion left ** this can be	
\$839.93 million	Grants & reduced tuitio Per 100,000 students ~				
Budget After Costs: \$7.58 billion	Salary Costs to Bring over experts: Per 10 experts ~ \$2 million			distributed in emergent cases/excess cost relief	

A Two Country Plan? Feasibility in Guatemala

Guatemala - Overview

A two-country plan – Energy Analysis

† Accessibility

Connection:

 In 2021: 97.87% of the country had access to electricity, but 76% of Guatemalans lived in energy poverty and only 47% have access to clean cooking

Reliability and Quality

- In 2020, 52.3% of their electricity production came from hydro power. Due to climate change and changing weather conditions, their hydropower capacity factor has declined. With temperatures rising there has been a consistent decreasing of precipitation and runoff
- In more rural areas, policies for Rural Electrification placed an emphasis on local renewable energy sources

So Environmental Impact

- Despite creating and using mostly renewable and low carbon sources of energy, the building of new plants tore into forested areas
- Jaguar Energy, their main electricity supplier (non-renewable) was guilty of dumping contaminated wastewater from a plant into Río La Mora
- While the country does not produce coal, they import from the US and Colombia, with a 153% jump in coal usage from 2000-2022
- Per capita, the CO2 emissions is 1.1 tonnes
- Guatemala loses up to 2460 hectares of tree cover annually due to their high reliance on firewood when cooking

Feasibility in Guatemala

Guatemala - Overview

A two-country plan – Energy Analysis

S Affordability

Prices per kWh (2024):

- Residential: \$0.298 USD
- Businesses: \$0.189 USD
- Canada in comparison has \$0.124 USD per kWh
- The country possesses the highest household electricity price among Latin American countries while being the 5th poorest amongst the other Latine American and Caribbean countries
- The government has imposed a social tariff that gives subsidized rates of electricity to households consuming under 300 kWh per month

Security

 More infrastructure requires more land and many Indigenous Guatemalans are affected by these projects – it has led to protests and the companies overextending have been met with aggression

Safety

- Only 48.1% had access to clean fuels for cooking food
 - Some have to use charcoal or dung which can lead to illnesses and indoor air pollution

O Potential for Roadblocks

Climate Change:

- This is an issue that affects the different parts of any plan to improve the country's energy poverty levels
- Slows or halts projects to expand energy infrastructure due to the rising temperatures and generally unpredictable extreme weather.

Source: The Great Climate Migration Has Begun [Online Image]. (2021). The New York Times.

https://www.nytimes.com/interactive/2020/ 07/23/magazine/climate-migration.html

- Increasing levels of poverty due to lower agricultural yields, lower crop reliability brought on by droughts and changing seasons and rainfall times has impacted crop growth
- In the Pacific lowland region, water companies, hydropower plants among other organizations compete for water resources

Feasibility in Guatemala

Guatemala – Feasibility

A two-country plan?

Ecuador: 10 Year Plan

Early planning

- Create job opportunities for Guatemalans (especially those from rural farming communities)
- Between 2020 and 2022, 233 000 Guatemalans arrived at the US border

Small Scale PV Farms

- With an improved systems to distribute LPG cylinders, individuals
 - in rural areas of Guatemala need to be educated on their usage

Educating those without access

Indigenous and Rural Outreach

• A good start to building a relationship towards the populations that live in land that are either lacking in energy or are prime real estate to build new energy plants like strong flowing rivers

- Beneficial to small to medium sized rural towns and largely not invasive
- Communities that are connected to the national energy grid saw high monthly charges of up to 400 GTQ or \$50 USD when agricultural workers usually only earned \$343 USD (2 644 GTQ) a good way to decrease continuous costs

Maintenance and Education program

• Can decrease the unreliability by maintain existing structures to maintain a good energy baseline

Guatemala – Feasibility

A two-country plan?

Ecuador: 10 Year Plan

Negotiating with the Rural and Indigenous populations

- The indigenous peoples of Guatemala make up around 44% of the population but no more than 10% of the members of the Congress are Indigenous, coupled with a history of corruption (ex. Jaguar Energy), there would need to be clear communication and negotiation when new projects are built on indigenous areas
- There would need to be more time spent building the trust of the communities around potential land for plants

Pricing

- Average wage of 10 500 GTQ, many especially those in rural areas are worried about the price of buying a full cylinder of LPG since they might not be able to afford all of it
- 1 liter of gas in Guatemala city is 12 GTQ

Citations and References

Astudillo, C. A., & López, D. F. (2022). Energy demand assessment based on time series techniques in Ecuador. Energy, 261, 125228, https://doi.org/10.1016/j.energy.2022.125228 Cervantes, A., Contreras, L., & Valencia, F. (2022). Distributed energy resources and their impact on the resilience of power systems in developing countries: Case study of Ecuador. Energy Reports, 8, 4514-4523. https://doi.org/10.1016/j.egyr.2022.06.043 Connaissance des Énergies. (2021). Ecuador: Energy overview 2021. https://www.connaissancedesenergies.org/sites/connaissancedesenergies.org/files/pdf-pt-vue/ecuador%202021.pdf Connaissance des Énergies. (2021). Ecuador: Energy overview 2021. https://www.connaissancedesenergies.org/sites/connaissancedesenergies.org/files/pdf-pt-vue/ecuador%202021.pdf Energy Sector Management Assistance Program. (2024). Access to clean fuels and technologies for cooking (Chapter 2). In Tracking SDG7: The energy progress report 2024. https://trackingsdg7.esmap.org/data/files/download-documents/SDG7%20-%20Report%202024%20-%20Chapter2-AccessToCleanFuelsAndTechnologiesForCooking.pdf García, C. E. (2021). Energy transitions in Ecuador: Assessing the prospects of renewable energy in the national development strategy [Doctoral dissertation, University of California]. eScholarship. https://escholarship.org/uc/item/1082n92h GCC. (2024). Exploring Ecuador's renewable energy potential. https://www.gcc.re/news/exploring-ecuador-s-renewable-energy-potential GlobalData. (2023). Ecuador could achieve an optimistic 400 MW solar PV capacity by 2030, says GlobalData. https://www.globaldata.com/media/power/ecuador-achieve-optimistic-400mw-solar-pv-capacity-2030-says-globaldata/ Instituto Nacional de Salud Pública de México. (2023). Role of the National Institutes of Health in fighting infectious diseases in Mexico. Global Health & Infectious Diseases Journal, 12(3), 12-23, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10189268/ Inter-American Development Bank. (n.d.). Energy transition in Latin America and the Caribbean. https://www.iadb.org/en/news/energy-transition-latin-america-and-caribbean Inter-American Development Bank, (2021). Ecuador: National energy transition project (EC-L1293). https://www.iadb.org/en/project/EC-L1293 International Energy Agency. (n.d.). Ecuador. https://www.iea.org/countries/ecuador International Renewable Energy Agency. (2023). Off-grid renewable energy statistics 2023. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2023/Dec/Off-grid Renewable Energy Statistics 2023.pdf International Renewable Energy Agency. (2024). Renewable energy capacity statistics 2024. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2024/Mar/IRENA RE Capacity Statistics 2024.pdf International Renewable Energy Agency. (2024). Renewable energy statistics 2024. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2024/Jul/IRENA Renewable Energy Statistics 2024.pdf International Trade Administration. (n.d.). Ecuador - electric power and renewable energy. U.S. Department of Commerce. https://www.trade.gov/country-commercial-guides/ecuador-electric-power-and-renewable-energy Mordor Intelligence, (2024). Ecuador wind energy market: Market trends 2024. https://www.mordorintelligence.com/industry-reports/ecuador-wind-energy-market/market-trends National Renewable Energy Laboratory. (2023). Photovoltaic and storage system cost benchmarking. https://www.nrel.gov/news/video/pv-storage-system-cost-benchmarking-text.html Norton Rose Fulbright. (n.d.). Renewable energy in Latin America: Ecuador. https://www.nortonrosefulbright.com/en/knowledge/publications/e9fe5e64/renewable-energy-in-latin-america-ecuador RFID Journal. (n.d.). How much does a fully functional RFID system cost? https://www.rfidjournal.com/fag/how-much-does-a-fully-functional-rfid-system-cost/38668/ Reyes Mena, L. M., & Zambrano Ortiz, C. (2023). Energy mix in Ecuador: Challenges, opportunities, and transition pathways toward sustainability. Energies, 16(20), 7166. https://doi.org/10.3390/en16207166 Ritchie, H., & Roser, M. (n.d.). Energy: Ecuador. Our World in Data. https://ourworldindata.org/energy/country/ecuador Smart Energy International. (2023). Ecuador could achieve 400 MW solar PV capacity by 2030, study shows. https://www.smart-energy.com/industry-sectors/smart-energy/ecuador-could-achieve-400mw-solar-pv-capacity-by-2030-study-shows/ Sustainable Energy for All. (2019). Rapid assessment gap analysis: Ecuador. https://www.seforall.org/sites/default/files/Ecuador_RAGA_EN_Released.pdf The World Bank, (n.d.), Access to electricity (% of population) - Ecuador, In World Development Indicators, https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS?view=chart The World Bank. (n.d.). Access to electricity, rural (% of rural population) - Ecuador. In World Development Indicators. https://data.worldbank.org/indicator/EG.ELC.ACCS.RU.ZS?locations=EC Transparency International. (2020). Corruption perceptions index 2020. https://www.transparency.org/en/cpi/2020 UNESCO-UNEVOC. (2021). Funding of training in Ecuador. https://unevoc.unesco.org/countryprofiles/docs/UNESCO_Funding-of-Training_Ecuador.pdf UNESCO World Heritage Centre. (n.d.). Galápagos Islands. https://whc.unesco.org/en/list/1/ U.S. Energy Information Administration. (n.d.). Ecuador energy profile. https://www.eia.gov/international/analysis/country/ecu World Food Programme. (2023). Ecuador: Annual country report 2023. https://www.wfp.org/operations/annual-country-report?operation_id=EC02&vear=2023 World LPG Association. (2018). Accelerating the LPG transition: Global lessons from the LPG adoption in developing countries. https://www.worldliquidgas.org/wp-content/uploads/2018/10/Accelerating-the-LPG-Transition.pdf Worldometer. (n.d.). Ecuador population (2024). https://www.worldometers.info/world-population/ecuador-population/#google_vignette Elcano Royal Institute. (2023). Ecuador's Energy Policy Mix: Development, Conservation and Nationalism with Chinese Loans. Retrieved from https://www.realinstitutoelcano.orgGreen World Journal. (2023). The Oil Industry in Ecuador: History, Current Situation and Challenges. Green World Journal, 6(3), 97-112. Retrieved from https://www.greenworldjournal.com U.S. Energy Information Administration. (2022). Country Analysis Brief: Ecuador. Retrieved from https://www.eia.gov World Bank. (2020). Issues and options in the energy sector: Ecuador. Retrieved from https://www.worldbank.org Ritchie, H., Roser, M., & Rosado, P. (2020). Ecuador: Energy Country Profile. Our World in Data. Retrieved from https://ourworldindata.org Mora-Silva, D., Bravo, M. B., & Sánchez, M. J. (2023). Barriers to renewable energy expansion: Ecuador as a case study. Pure UPS Repository. Retrieved from https://pure.ups.edu.ec Fernández Mora, N. E., & Mideros Mora, A. I. (2023). Between oil dependence and energy sovereignty: The limits of the energy transition in Ecuador. PUCE Investigates. Retrieved from https://puceinvestiga.puce.edu.ec Graham, J. P., & Jack, D. W. (2018). Government policy, clean fuel access, and persistent fuel stacking in Ecuador. Energy for Sustainable Development, 46, 111-122. Real Instituto Elcano. (2020). Ecuador's energy challenges will endure. Retrieved from https://www.emerald.com

Emerald Insight. (2022). Barriers to energy transition and the impact of hydropower dependency in Ecuador. Retrieved from https://www.emeraldinsight.com